Montesinos-López Osval A, Martín-Vallejo Javier, Crossa José, Gianola Daniel, Hernández-Suárez Carlos M, Montesinos-López Abelardo, Juliana Philomin, Singh Ravi
Facultad de Telemática.
Departamento de Estadística, Universidad de Salamanca, c/Espejo 2, Salamanca, 37007, España.
G3 (Bethesda). 2019 Feb 7;9(2):601-618. doi: 10.1534/g3.118.200998.
Genomic selection is revolutionizing plant breeding. However, still lacking are better statistical models for ordinal phenotypes to improve the accuracy of the selection of candidate genotypes. For this reason, in this paper we explore the genomic based prediction performance of two popular machine learning methods: the Multi Layer Perceptron (MLP) and support vector machine (SVM) methods the Bayesian threshold genomic best linear unbiased prediction (TGBLUP) model. We used the percentage of cases correctly classified (PCCC) as a metric to measure the prediction performance, and seven real data sets to evaluate the prediction accuracy, and found that the best predictions (in four out of the seven data sets) in terms of PCCC occurred under the TGLBUP model, while the worst occurred under the SVM method. Also, in general we found no statistical differences between using 1, 2 and 3 layers under the MLP models, which means that many times the conventional neuronal network model with only one layer is enough. However, although even that the TGBLUP model was better, we found that the predictions of MLP and SVM were very competitive with the advantage that the SVM was the most efficient in terms of the computational time required.
基因组选择正在彻底改变植物育种。然而,用于有序表型的更好统计模型仍然缺乏,以提高候选基因型选择的准确性。因此,在本文中,我们探讨了两种流行的机器学习方法基于基因组的预测性能:多层感知器(MLP)和支持向量机(SVM)方法以及贝叶斯阈值基因组最佳线性无偏预测(TGBLUP)模型。我们使用正确分类病例的百分比(PCCC)作为衡量预测性能的指标,并使用七个真实数据集来评估预测准确性,发现就PCCC而言,最佳预测(在七个数据集中的四个)出现在TGLBUP模型下,而最差预测出现在SVM方法下。此外,总体而言,我们发现在MLP模型下使用1层、2层和3层之间没有统计学差异,这意味着很多时候仅一层的传统神经网络模型就足够了。然而,尽管TGBLUP模型更好,但我们发现MLP和SVM的预测非常有竞争力,其优势在于SVM在所需计算时间方面效率最高。