Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea.
Department of Physics, Korea University, Seoul, 02855, Korea.
Nat Commun. 2020 Nov 12;11(1):5721. doi: 10.1038/s41467-020-19550-x.
A mouse skull is a barrier for high-resolution optical imaging because its thick and inhomogeneous internal structures induce complex aberrations varying drastically from position to position. Invasive procedures creating either thinned-skull or open-skull windows are often required for the microscopic imaging of brain tissues underneath. Here, we propose a label-free imaging modality termed laser scanning reflection-matrix microscopy for recording the amplitude and phase maps of reflected waves at non-confocal points as well as confocal points. The proposed method enables us to find and computationally correct up to 10,000 angular modes of aberrations varying at every 10 × 10 µm patch in the sample plane. We realized reflectance imaging of myelinated axons in vivo underneath an intact mouse skull, with an ideal diffraction-limited spatial resolution of 450 nm. Furthermore, we demonstrated through-skull two-photon fluorescence imaging of neuronal dendrites and their spines by physically correcting the aberrations identified from the reflection matrix.
鼠头骨是高分辨率光学成像的障碍,因为其内部结构厚实且不均匀,会引起从一个位置到另一个位置变化剧烈的复杂像差。为了对下面的脑组织进行微观成像,通常需要进行侵入性的程序来创建减薄头骨或开颅窗口。在这里,我们提出了一种无标记成像模式,称为激光扫描反射矩阵显微镜,用于记录非共焦点和共焦点处反射波的幅度和相位图。该方法使我们能够找到并在计算上纠正每个 10×10 μm 样本平面上多达 10000 个变化的角模式像差。我们在完整的鼠头骨下实现了活体内有髓轴突的反射率成像,具有理想的衍射极限空间分辨率为 450nm。此外,我们通过从反射矩阵中识别出的像差的物理校正,证明了通过头骨的双光子荧光成像神经元树突及其棘突。