Suppr超能文献

基于时空信息融合的 COVID-19 CT 扫描计算机辅助诊断。

Computer-Aided Diagnosis of COVID-19 CT Scans Based on Spatiotemporal Information Fusion.

机构信息

College of Optoelectronic Science and Engineering, Soochow University, Suzhou, Jiangsu 215006, China.

MeBotX Intelligent Technology (Suzhou) Co. Ltd., Suzhou, Jiangsu 215000, China.

出版信息

J Healthc Eng. 2021 Mar 3;2021:6649591. doi: 10.1155/2021/6649591. eCollection 2021.

Abstract

Coronavirus disease (COVID-19) is highly contagious and pathogenic. Currently, the diagnosis of COVID-19 is based on nucleic acid testing, but it has false negatives and hysteresis. The use of lung CT scans can help screen and effectively monitor diagnosed cases. The application of computer-aided diagnosis technology can reduce the burden on doctors, which is conducive to rapid and large-scale diagnostic screening. In this paper, we proposed an automatic detection method for COVID-19 based on spatiotemporal information fusion. Using the segmentation network in the deep learning method to segment the lung area and the lesion area, the spatiotemporal information features of multiple CT scans are extracted to perform auxiliary diagnosis analysis. The performance of this method was verified on the collected dataset. We achieved the classification of COVID-19 CT scans and non-COVID-19 CT scans and analyzed the development of the patients' condition through the CT scans. The average accuracy rate is 96.7%, sensitivity is 95.2%, and F1 score is 95.9%. Each scan takes about 30 seconds for detection.

摘要

冠状病毒病(COVID-19)具有高度传染性和致病性。目前,COVID-19 的诊断基于核酸检测,但存在假阴性和滞后。使用肺部 CT 扫描可以帮助筛选和有效监测确诊病例。计算机辅助诊断技术的应用可以减轻医生的负担,有利于快速大规模的诊断筛查。本文提出了一种基于时空信息融合的 COVID-19 自动检测方法。利用深度学习方法中的分割网络对肺部区域和病变区域进行分割,提取多个 CT 扫描的时空信息特征,进行辅助诊断分析。该方法在收集的数据集上进行了验证。我们实现了 COVID-19 CT 扫描和非 COVID-19 CT 扫描的分类,并通过 CT 扫描分析了患者病情的发展。平均准确率为 96.7%,灵敏度为 95.2%,F1 得分为 95.9%。每次扫描的检测时间约为 30 秒。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验