Morís Daniel I, de Moura Joaquim, Marcos Pedro J, Rey Enrique Míguez, Novo Jorge, Ortega Marcos
Centro de Investigación CITIC, Universidade da Coruña, Campus de Elviña, s/n, 15071 A Coruña, Spain.
Grupo VARPA, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain.
Biomed Signal Process Control. 2023 Jul;84:104818. doi: 10.1016/j.bspc.2023.104818. Epub 2023 Mar 9.
COVID-19 is a global threat for the healthcare systems due to the rapid spread of the pathogen that causes it. In such situation, the clinicians must take important decisions, in an environment where medical resources can be insufficient. In this task, the computer-aided diagnosis systems can be very useful not only in the task of supporting the clinical decisions but also to perform relevant analyses, allowing them to understand better the disease and the factors that can identify the high risk patients. For those purposes, in this work, we use several machine learning algorithms to estimate the outcome of COVID-19 patients given their clinical information. Particularly, we perform 2 different studies: the first one estimates whether the patient is at low or at high risk of death whereas the second estimates if the patient needs hospitalization or not. The results of the analyses of this work show the most relevant features for each studied scenario, as well as the classification performance of the considered machine learning models. In particular, the XGBoost algorithm is able to estimate the need for hospitalization of a patient with an AUC-ROC of while it can also estimate the risk of death with an AUC-ROC of . Results have demonstrated the great potential of the proposal to determine those patients that need a greater amount of medical resources for being at a higher risk. This provides the healthcare services with a tool to better manage their resources.
由于导致COVID-19的病原体迅速传播,它对医疗系统构成了全球威胁。在这种情况下,临床医生必须在医疗资源可能不足的环境中做出重要决策。在这项任务中,计算机辅助诊断系统不仅在支持临床决策的任务中非常有用,而且在进行相关分析方面也很有用,使他们能够更好地了解疾病以及识别高危患者的因素。出于这些目的,在这项工作中,我们使用几种机器学习算法,根据COVID-19患者的临床信息估计其预后。特别是,我们进行了两项不同的研究:第一项研究估计患者死亡风险是低还是高,而第二项研究估计患者是否需要住院治疗。这项工作的分析结果显示了每个研究场景中最相关的特征,以及所考虑的机器学习模型的分类性能。特别是,XGBoost算法能够以AUC-ROC为[具体数值1]来估计患者的住院需求,同时它也能够以AUC-ROC为[具体数值2]来估计死亡风险。结果表明,该提议在确定那些因风险较高而需要更多医疗资源的患者方面具有巨大潜力。这为医疗服务提供了一种更好地管理其资源的工具。