Suppr超能文献

倾向得分调整后的网络调查估计值的季度校准数据与年度校准数据比较

Comparison of Quarterly and Yearly Calibration Data for Propensity Score Adjusted Web Survey Estimates.

作者信息

Irimata Katherine E, He Yulei, Cai Bill, Shin Hee-Choon, Parsons Van L, Parker Jennifer D

机构信息

National Center for Health Statistics, Centers for Disease Control and Prevention, Hyattsville, MD.

出版信息

Surv Methods Insights Field. 2020;2020. doi: 10.13094/SMIF-2020-00018. Epub 2020 Oct 12.

Abstract

While web surveys have become increasingly popular as a method of data collection, there is concern that estimates obtained from web surveys may not reflect the target population of interest. Web survey estimates can be calibrated to existing national surveys using a propensity score adjustment, although requirements for the size and collection timeline of the reference data set have not been investigated. We evaluate health outcomes estimates from the National Center for Health Statistics' Research and Development web survey. In our study, the 2016 National Health Interview Survey as well as its quarterly subsets are considered as reference datasets for the web data. It is demonstrated that the calibrated health estimates overall vary little when using the quarterly or yearly data, suggesting that there is flexibility in selecting the reference dataset. This finding has many practical implications for constructing reference data, including the reduced cost and burden of a smaller sample size and a more flexible timeline.

摘要

虽然网络调查作为一种数据收集方法越来越受欢迎,但人们担心从网络调查中获得的估计值可能无法反映目标感兴趣的人群。网络调查估计值可以使用倾向得分调整来校准到现有的全国性调查,尽管参考数据集的规模和收集时间线的要求尚未得到研究。我们评估了美国国家卫生统计中心研发网络调查中的健康结果估计值。在我们的研究中,2016年全国健康访谈调查及其季度子集被视为网络数据的参考数据集。结果表明,使用季度或年度数据时,校准后的健康估计值总体差异不大,这表明在选择参考数据集方面具有灵活性。这一发现对构建参考数据有许多实际意义,包括降低较小样本量的成本和负担以及更灵活的时间线。

相似文献

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验