Kim Jaekyung, Barath Abhijeet S, Rusheen Aaron E, Rojas Cabrera Juan M, Price J Blair, Shin Hojin, Goyal Abhinav, Yuen Jason W, Jondal Danielle E, Blaha Charles D, Lee Kendall H, Jang Dong Pyo, Oh Yoonbae
Department of Neurology, University of California, San Francisco, San Francisco, California 94158, United States.
Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, San Francisco, California 94158, United States.
ACS Omega. 2021 Mar 3;6(10):6607-6613. doi: 10.1021/acsomega.0c05217. eCollection 2021 Mar 16.
Dysregulation of the neurotransmitter dopamine (DA) is implicated in several neuropsychiatric conditions. Multiple-cyclic square-wave voltammetry (MCSWV) is a state-of-the-art technique for measuring tonic DA levels with high sensitivity (<5 nM), selectivity, and spatiotemporal resolution. Currently, however, analysis of MCSWV data requires manual, qualitative adjustments of analysis parameters, which can inadvertently introduce bias. Here, we demonstrate the development of a computational technique using a statistical model for standardized, unbiased analysis of experimental MCSWV data for unbiased quantification of tonic DA. The oxidation current in the MCSWV signal was predicted to follow a lognormal distribution. The DA-related oxidation signal was inferred to be present in the top 5% of this analytical distribution and was used to predict a tonic DA level. The performance of this technique was compared against the previously used peak-based method on paired and post-calibration datasets. Analytical inference of DA signals derived from the predicted statistical model enabled high-fidelity conversion of the current signal to a concentration value via post-calibration. As a result, this technique demonstrated reliable and improved estimation of tonic DA levels compared to the conventional manual post-processing technique using the peak current signals. These results show that probabilistic inference-based voltammetry signal processing techniques can standardize the determination of tonic DA concentrations, enabling progress toward the development of MCSWV as a robust research and clinical tool.
神经递质多巴胺(DA)的失调与多种神经精神疾病有关。多循环方波伏安法(MCSWV)是一种先进的技术,可用于高灵敏度(<5 nM)、高选择性和高时空分辨率地测量多巴胺的静息水平。然而,目前对MCSWV数据的分析需要对分析参数进行手动的、定性的调整,这可能会无意中引入偏差。在这里,我们展示了一种计算技术的开发,该技术使用统计模型对实验性MCSWV数据进行标准化、无偏差分析,以实现对多巴胺静息水平的无偏差量化。预测MCSWV信号中的氧化电流遵循对数正态分布。推断与多巴胺相关的氧化信号存在于该分析分布的前5%中,并用于预测多巴胺的静息水平。在配对和校准后的数据集中,将该技术的性能与之前使用的基于峰值的方法进行了比较。通过校准后,从预测的统计模型中得出的多巴胺信号的分析推断能够将电流信号高保真地转换为浓度值。结果表明,与使用峰值电流信号的传统手动后处理技术相比,该技术在多巴胺静息水平的估计方面表现出可靠且有所改进。这些结果表明,基于概率推断的伏安法信号处理技术可以使多巴胺静息浓度的测定标准化,有助于将MCSWV发展成为一种强大的研究和临床工具。