Li Yuhuan, Tang Huayuan, Andrikopoulos Nicholas, Javed Ibrahim, Cecchetto Luca, Nandakumar Aparna, Kakinen Aleksandr, Davis Thomas P, Ding Feng, Ke Pu Chun
Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, 200032, China.
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
Adv Nanobiomed Res. 2021 Jan;1(1). doi: 10.1002/anbr.202000040. Epub 2020 Nov 26.
Alzheimer's disease (AD) is a major neurological disorder impairing its carrier's cognitive function, memory and lifespan. While the development of AD nanomedicine is still nascent, the field is evolving into a new scientific frontier driven by the diverse physicochemical properties and theranostic potential of nanomaterials and nanocomposites. Characteristic to the AD pathology is the deposition of amyloid plaques and tangles of amyloid beta (Aβ) and tau, whose aggregation kinetics may be curbed by nanoparticle inhibitors via sequence-specific targeting or nonspecific interactions with the amyloidogenic proteins. As literature implicates cell membrane as a culprit in AD pathogenesis, here we summarize the membrane axis of AD nanomedicine and present a new rationale that the field development may greatly benefit from harnessing our existing knowledge of Aβ-membrane interaction, nanoparticle-membrane interaction and Aβ-nanoparticle interaction.
阿尔茨海默病(AD)是一种主要的神经疾病,会损害患者的认知功能、记忆力和寿命。虽然AD纳米医学的发展仍处于初期阶段,但该领域正发展成为一个新的科学前沿领域,这是由纳米材料和纳米复合材料的多种物理化学性质以及诊疗潜力所驱动的。AD病理学的特征是淀粉样斑块的沉积以及淀粉样β蛋白(Aβ)和tau蛋白缠结,纳米颗粒抑制剂可通过序列特异性靶向或与淀粉样蛋白的非特异性相互作用来抑制其聚集动力学。由于文献表明细胞膜是AD发病机制中的一个罪魁祸首,在此我们总结了AD纳米医学的膜轴,并提出了一种新的理论依据,即该领域的发展可能会极大地受益于利用我们现有的关于Aβ与膜相互作用、纳米颗粒与膜相互作用以及Aβ与纳米颗粒相互作用的知识。