Chemistry and Chemical Engineering Division, California Institute of Technology, Pasadena, California, USA.
NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA.
Astrobiology. 2021 Apr;21(4):421-442. doi: 10.1089/ast.2020.2301. Epub 2021 Mar 19.
The atomic-scale fragmentation processes involved in molecules undergoing hypervelocity impacts (HVIs; defined as 3 km/s) are challenging to investigate via experiments and still not well understood. This is particularly relevant for the consistency of biosignals from small-molecular-weight neutral organic molecules obtained during solar system robotic missions sampling atmospheres and plumes at hypervelocities. Experimental measurements to replicate HVI effects on neutral molecules are challenging, both in terms of accelerating uncharged species and isolating the multiple transition states over very rapid timescales (1 ps). Nonequilibrium first-principles-based simulations extend the range of what is possible with experiments. We report on high-fidelity simulations of the fragmentation of small organic biosignature molecules over the range = 112 km/s, and demonstrate that the fragmentation fraction is a sensitive function of velocity, impact angle, molecular structure, impact surface material, and the presence of surrounding ice shells. Furthermore, we generate interpretable fragmentation pathways and spectra for velocity values above the fragmentation thresholds and reveal how organic molecules encased in ice grains, as would likely be the case for those in "ocean worlds," are preserved at even higher velocities than bare molecules. Our results place ideal spacecraft encounter velocities between 3 and 5 km/s for bare amino and fatty acids and within 4-6 km/s for the same species encased in ice grains and predict the onset of organic fragmentation in ice grains at 5 km/s, both consistent with recent experiments exploring HVI effects using impact-induced ionization and analysis via mass spectrometry and from the analysis of Enceladus organics in Cassini Data. From nanometer-sized ice Ih clusters, we establish that HVI energy is dissipated by ice casings through thermal resistance to the impact shock wave and that an upper fragmentation velocity limit exists at which ultimately any organic contents will be cleaved by the surrounding ice-this provides a fundamental path to characterize micrometer-sized ice grains. Altogether, these results provide quantifiable insights to bracket future instrument design and mission parameters.
在经历超高速撞击(HVIs;定义为 3km/s)的分子中,原子尺度的碎裂过程很难通过实验进行研究,而且目前还没有得到很好的理解。这对于在太阳系机器人任务中采样大气层和羽流时,从小分子量中性有机分子中获得的生物信号的一致性尤其重要。实验测量很难复制中性分子的 HVI 效应,无论是在加速不带电物质方面,还是在非常快速的时间尺度(1ps)内隔离多个过渡态方面都是如此。基于非平衡第一性原理的模拟扩展了实验的可能性范围。我们报告了在 112km/s 范围内对小有机生物特征分子碎裂的高保真模拟,结果表明,碎裂分数是速度、撞击角度、分子结构、撞击表面材料和周围冰壳存在的敏感函数。此外,我们为高于碎裂阈值的速度生成了可解释的碎裂途径和光谱,并揭示了包裹在冰粒中的有机分子(就像那些在“海洋世界”中的有机分子一样)是如何在比裸分子更高的速度下得以保存的。我们的结果表明,对于裸露的氨基酸和脂肪酸,理想的航天器相遇速度在 3 到 5km/s 之间,而对于包裹在冰粒中的相同物质,这个速度在 4 到 6km/s 之间,并预测在 5km/s 时冰粒中的有机物质开始碎裂,这与最近使用撞击诱导电离进行 HVI 效应探索的实验以及卡西尼号数据中对土卫二有机物的分析结果一致。从纳米级的冰 Ih 团簇开始,我们确定了 HVI 能量通过冰壳的热阻耗散,并且存在一个最终任何有机物质都将被周围冰粒切断的碎裂速度上限——这为描述微米级冰粒提供了一条基本途径。总的来说,这些结果为未来仪器设计和任务参数提供了可量化的见解。