Mohseni M, Wang Q, Heinz B, Kewenig M, Schneider M, Kohl F, Lägel B, Dubs C, Chumak A V, Pirro P
Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany.
Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria.
Phys Rev Lett. 2021 Mar 5;126(9):097202. doi: 10.1103/PhysRevLett.126.097202.
Relaxation of linear magnetization dynamics is well described by the viscous Gilbert damping processes. However, for strong excitations, nonlinear damping processes such as the decay via magnon-magnon interactions emerge and trigger additional relaxation channels. Here, we use space- and time-resolved microfocused Brillouin light scattering spectroscopy and micromagnetic simulations to investigate the nonlinear relaxation of strongly driven propagating spin waves in yttrium iron garnet nanoconduits. We show that the nonlinear magnon relaxation in this highly quantized system possesses intermodal features, i.e., magnons scatter to higher-order quantized modes through a cascade of scattering events. We further show how to control such intermodal dissipation processes by quantization of the magnon band in single-mode devices, where this phenomenon approaches its fundamental limit. Our study extends the knowledge about nonlinear propagating spin waves in nanostructures which is essential for the construction of advanced spin-wave elements as well as the realization of Bose-Einstein condensates in scaled systems.
线性磁化动力学的弛豫可以通过粘性吉尔伯特阻尼过程得到很好的描述。然而,对于强激发,诸如通过磁振子 - 磁振子相互作用的衰减等非线性阻尼过程会出现并引发额外的弛豫通道。在这里,我们使用空间和时间分辨的微聚焦布里渊光散射光谱以及微磁模拟来研究钇铁石榴石纳米管道中强驱动传播自旋波的非线性弛豫。我们表明,在这个高度量子化的系统中,非线性磁振子弛豫具有模式间特征,即磁振子通过一系列散射事件散射到高阶量子化模式。我们进一步展示了如何通过单模器件中磁振子能带的量子化来控制这种模式间耗散过程,在这种情况下,该现象接近其基本极限。我们的研究扩展了关于纳米结构中非线性传播自旋波的知识,这对于构建先进的自旋波元件以及在缩放系统中实现玻色 - 爱因斯坦凝聚至关重要。