Merbouche H, Divinskiy B, Nikolaev K O, Kaspar C, Pernice W H P, Gouéré D, Lebrun R, Cros V, Ben Youssef J, Bortolotti P, Anane A, Demokritov S O, Demidov V E
Institute of Applied Physics, University of Münster, 48149, Münster, Germany.
Physics Institute, University of Münster, 48149, Münster, Germany.
Sci Rep. 2022 May 4;12(1):7246. doi: 10.1038/s41598-022-10822-8.
Nonlinear self-phase modulation is a universal phenomenon responsible, for example, for the formation of propagating dynamic solitons. It has been reported for waves of different physical nature. However its direct experimental observation for spin waves has been challenging. Here we show that exceptionally strong phase modulation can be achieved for spin waves in microscopic waveguides fabricated from nanometer-thick films of magnetic insulator, which support propagation of spin waves with large amplitudes corresponding to angles of magnetization precession exceeding 10°. At these amplitudes, the nonstationary nonlinear dynamic response of the spin system causes an extreme broadening of the spectrum of spin-wave pulses resulting in a strong spatial variation of the spin-wave wavelength and a temporal variation of the spin-wave phase across the pulse. Our findings demonstrate great complexity of nonlinear wave processes in microscopic magnetic structures and importance of their understanding for technical applications of spin waves in integrated devices.
非线性自相位调制是一种普遍现象,例如,它是传播动态孤子形成的原因。不同物理性质的波都有相关报道。然而,对自旋波进行直接实验观测一直具有挑战性。在此,我们表明,对于由纳米厚磁性绝缘体薄膜制成的微观波导中的自旋波,可以实现异常强的相位调制,这种波导支持大振幅自旋波的传播,其对应的磁化进动角度超过10°。在这些振幅下,自旋系统的非平稳非线性动态响应导致自旋波脉冲频谱极度展宽,从而使自旋波波长在空间上产生强烈变化,且自旋波相位在脉冲上产生时间变化。我们的研究结果表明微观磁性结构中非线性波过程极为复杂,且理解这些过程对于自旋波在集成器件中的技术应用至关重要。