Qin Huajun, Holländer Rasmus B, Flajšman Lukáš, van Dijken Sebastiaan
NanoSpin, Department of Applied Physics, Aalto University School of Science, P. O. Box 15100, FI-00076 Aalto, Finland.
School of Physics and Technology, Wuhan University, Wuhan 430072, China.
Nano Lett. 2022 Jul 13;22(13):5294-5300. doi: 10.1021/acs.nanolett.2c01238. Epub 2022 Jun 21.
Long-distance transport and control of spin waves through nanochannels is essential for integrated magnonic technology. Current strategies relying on the patterning of single-layer nano-waveguides suffer from a decline of the spin-wave decay length upon downscaling or require large magnetic bias field. Here, we introduce a new waveguiding structure based on low-damping continuous yttrium iron garnet (YIG) films. Rather than patterning the YIG film, we define nanoscopic spin-wave transporting channels within YIG by dipolar coupling to ferromagnetic metal nanostripes. The hybrid material structure offers long-distance transport of spin waves with a decay length of ∼20 μm in 160 nm wide waveguides over a broad frequency range at small bias field. We further evidence that spin waves can be redirected easily by stray-field-induced bends in continuous YIG films. The combination of low-loss spin-wave guiding and straightforward nanofabrication highlights a new approach toward the implementation of magnonic integrated circuits for spin-wave computing.
通过纳米通道对自旋波进行长距离传输和控制对于集成磁子技术至关重要。目前依赖于单层纳米波导图案化的策略存在以下问题:在缩小尺寸时自旋波衰减长度会下降,或者需要大的磁偏置场。在此,我们引入一种基于低阻尼连续钇铁石榴石(YIG)薄膜的新型波导结构。我们不是对YIG薄膜进行图案化,而是通过与铁磁金属纳米条带的偶极耦合在YIG内定义纳米级自旋波传输通道。这种混合材料结构在小偏置场下的宽频率范围内,能在160nm宽的波导中实现自旋波的长距离传输,其衰减长度约为20μm。我们进一步证明,自旋波可以通过连续YIG薄膜中杂散场引起的弯曲轻松地重新定向。低损耗自旋波导与直接纳米制造的结合突出了一种实现用于自旋波计算的磁子集成电路的新方法。