Heinz Björn, Brächer Thomas, Schneider Michael, Wang Qi, Lägel Bert, Friedel Anna M, Breitbach David, Steinert Steffen, Meyer Thomas, Kewenig Martin, Dubs Carsten, Pirro Philipp, Chumak Andrii V
Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany.
Graduate School Materials Science in Mainz, Staudingerweg 9, D-55128 Mainz, Germany.
Nano Lett. 2020 Jun 10;20(6):4220-4227. doi: 10.1021/acs.nanolett.0c00657. Epub 2020 May 7.
Modern-day CMOS-based computation technology is reaching its fundamental limitations. The emerging field of magnonics, which utilizes spin waves for data transport and processing, proposes a promising path to overcome these limitations. Different devices have been demonstrated recently on the macro- and microscale, but the feasibility of the magnonics approach essentially relies on the scalability of the structure feature size down to the extent of a few 10 nm, which are typical sizes for the established CMOS technology. Here, we present a study of propagating spin-wave packets in individual yttrium iron garnet (YIG) conduits with lateral dimensions down to 50 nm. Space and time-resolved microfocused Brillouin-light-scattering (BLS) spectroscopy is used to characterize the YIG nanostructures and measure the spin-wave decay length and group velocity directly. The revealed magnon transport at the scale comparable to the scale of CMOS proves the general feasibility of magnon-based data processing.
现代基于CMOS的计算技术正接近其基本极限。利用自旋波进行数据传输和处理的新兴磁子学领域,为克服这些限制提出了一条有前景的途径。最近在宏观和微观尺度上已经展示了不同的器件,但磁子学方法的可行性本质上依赖于结构特征尺寸缩小到几十纳米的程度,这是成熟CMOS技术的典型尺寸。在此,我们展示了对横向尺寸低至50纳米的单个钇铁石榴石(YIG)管道中传播的自旋波包的研究。利用空间和时间分辨的微聚焦布里渊光散射(BLS)光谱来表征YIG纳米结构,并直接测量自旋波衰减长度和群速度。在与CMOS尺度相当的尺度上揭示的磁振子传输证明了基于磁振子的数据处理的总体可行性。