Suppr超能文献

iDHS-Deep:一种基于深度神经网络的预测 DNase I 超敏位点的集成工具。

iDHS-Deep: an integrated tool for predicting DNase I hypersensitive sites by deep neural network.

机构信息

Informational Biology at University of Electronic Science and Technology of China, China.

出版信息

Brief Bioinform. 2021 Sep 2;22(5). doi: 10.1093/bib/bbab047.

Abstract

DNase I hypersensitive site (DHS) refers to the hypersensitive region of chromatin for the DNase I enzyme. It is an important part of the noncoding region and contains a variety of regulatory elements, such as promoter, enhancer, and transcription factor-binding site, etc. Moreover, the related locus of disease (or trait) are usually enriched in the DHS regions. Therefore, the detection of DHS region is of great significance. In this study, we develop a deep learning-based algorithm to identify whether an unknown sequence region would be potential DHS. The proposed method showed high prediction performance on both training datasets and independent datasets in different cell types and developmental stages, demonstrating that the method has excellent superiority in the identification of DHSs. Furthermore, for the convenience of related wet-experimental researchers, the user-friendly web-server iDHS-Deep was established at http://lin-group.cn/server/iDHS-Deep/, by which users can easily distinguish DHS and non-DHS and obtain the corresponding developmental stage ofDHS.

摘要

DNase I 超敏位点(DHS)是指 DNase I 酶对染色质的超敏区域。它是非编码区域的重要组成部分,包含多种调控元件,如启动子、增强子和转录因子结合位点等。此外,疾病(或特征)相关的基因座通常富集在 DHS 区域。因此,检测 DHS 区域具有重要意义。在这项研究中,我们开发了一种基于深度学习的算法来识别未知序列区域是否具有潜在的 DHS 特性。该方法在不同细胞类型和发育阶段的训练数据集和独立数据集上均表现出了较高的预测性能,表明该方法在 DHS 识别方面具有优异的优越性。此外,为了方便相关湿实验研究人员,我们建立了一个用户友好的 DHS 识别在线服务器 iDHS-Deep,网址为:http://lin-group.cn/server/iDHS-Deep/,用户可以通过该服务器轻松区分 DHS 和非 DHS,并获得相应的 DHS 发育阶段。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验