Biostatistics, Fielding School of Public Health, University of California, Los Angeles, United States of America; Radiological Science, David Geffen School of Medicine, University of California, Los Angeles, United States of America.
Biostatistics, Fielding School of Public Health, University of California, Los Angeles, United States of America; Radiological Science, David Geffen School of Medicine, University of California, Los Angeles, United States of America.
Contemp Clin Trials. 2021 May;104:106333. doi: 10.1016/j.cct.2021.106333. Epub 2021 Mar 19.
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease characterized by an unpredictable decline in lung function. Predicting IPF progression from the early changes in lung function tests have known to be a challenge due to acute exacerbation. Although it is unpredictable, the neighboring regions of fibrotic reticulation increase during IPF's progression. With this clinical information, quantitative characteristics of high-resolution computed tomography (HRCT) and a statistical learning paradigm, the aim is to build a model to predict IPF progression.
A paired set of anonymized 193 HRCT images from IPF subjects with 6-12 month intervals were collected retrospectively. The study was conducted in two parts: (1) Part A collects the ground truth in small regions of interest (ROIs) with labels of "expected to progress" or "expected to be stable" at baseline HRCT and develop a statistical learning model to classify voxels in the ROIs. (2) Part B uses the voxel-level classifier from Part A to produce whole-lung level scores of a single-scan total probability's (STP) baseline.
Using annotated ROIs from 71 subjects' HRCT scans in Part A, we applied Quantum Particle Swarm Optimization-Random Forest (QPSO-RF) to build the classifier. Then, 122 subjects' HRCT scans were used to test the prediction. Using Spearman rank correlations and survival analyses, we ascertained STP associations with 6-12 month changes in quantitative lung fibrosis and forced vital capacity.
This study can serve as a reference for collecting ground truth, and developing statistical learning techniques to predict progression in medical imaging.
特发性肺纤维化(IPF)是一种致命的间质性肺疾病,其特征是肺功能不可预测地下降。由于急性加重,从肺功能测试的早期变化预测 IPF 的进展一直是一个挑战。尽管无法预测,但在 IPF 进展过程中,纤维化网状结构的相邻区域会增加。利用这些临床信息、高分辨率计算机断层扫描(HRCT)的定量特征和统计学习范例,旨在构建一个预测 IPF 进展的模型。
回顾性收集了一组来自 IPF 患者的 193 对具有 6-12 个月间隔的匿名 HRCT 图像。该研究分为两部分进行:(1)第 A 部分在基线 HRCT 时收集带有“预计进展”或“预计稳定”标签的小感兴趣区域(ROI)的地面实况,并开发统计学习模型对 ROI 中的体素进行分类。(2)第 B 部分使用第 A 部分中的体素分类器生成单次扫描总概率(STP)基线的全肺水平评分。
使用第 A 部分中 71 位患者 HRCT 扫描的带注释 ROI,我们应用量子粒子群优化-随机森林(QPSO-RF)来构建分类器。然后,使用 122 位患者的 HRCT 扫描进行测试预测。使用 Spearman 秩相关和生存分析,我们确定了 STP 与定量肺纤维化和用力肺活量在 6-12 个月变化的相关性。
这项研究可以作为收集地面实况和开发统计学习技术以预测医学影像学进展的参考。