Department of Biomedical Engineering, University of Southern California, Los Angeles, California.
USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California.
Ophthalmol Glaucoma. 2019 Nov-Dec;2(6):422-428. doi: 10.1016/j.ogla.2019.08.004. Epub 2019 Aug 23.
To assess the diagnostic accuracy of multiple machine learning models using full retinal nerve fiber layer (RNFL) thickness maps in detecting glaucoma.
Case-control study.
A total of 93 eyes from 69 patients with glaucoma and 128 eyes from 128 age- and sex-matched healthy controls from the Los Angeles Latino Eye Study (LALES), a large population-based, longitudinal cohort study consisting of Latino participants aged ≥40 years residing in El Puente, California.
The 6×6-mm RNFL thickness maps centered on the optic nerve head (Cirrus 4000; Zeiss, Dublin, CA) were supplied to 4 different machine learning algorithms. These models included 2 conventional machine learning algorithms, Support Vector Machine (SVM) and K-Nearest Neighbor (KNN), and 2 convolutional neural nets, ResNet-18 and GlaucomaNet, which was a custom-made deep learning network. All models were tested with 5-fold cross validation.
Area under the curve (AUC) statistics to assess diagnostic accuracy of each model compared with conventional average circumpapillary RNFL thickness.
All 4 models achieved similarly high diagnostic accuracies, with AUC values ranging from 0.91 to 0.92. These values were significantly higher than those for average circumpapillary RNFL thickness, which had an AUC of 0.76 in the same patient population.
Superior diagnostic performance was achieved with both conventional machine learning and convolutional neural net models compared with circumpapillary RNFL thickness. This supports the importance of the spatial structure of RNFL thickness map data in diagnosing glaucoma and further efforts to optimize our use of this data.
使用全视网膜神经纤维层(RNFL)厚度图评估多种机器学习模型在检测青光眼方面的诊断准确性。
病例对照研究。
来自洛杉矶拉丁裔眼科研究(LALES)的 69 名青光眼患者的 93 只眼和 128 名年龄和性别匹配的健康对照者的 128 只眼。这是一项大型基于人群的纵向队列研究,参与者为居住在加利福尼亚州埃尔彭特的年龄≥40 岁的拉丁裔人群。
为 4 种不同的机器学习算法提供了以视盘为中心的 6×6mm RNFL 厚度图(Cirrus 4000;蔡司,都柏林,加利福尼亚州)。这些模型包括 2 种传统机器学习算法,支持向量机(SVM)和 K 最近邻(KNN),以及 2 种卷积神经网络,ResNet-18 和 GlaucomaNet,这是一种定制的深度学习网络。所有模型均经过 5 折交叉验证进行测试。
评估每个模型与传统平均环周 RNFL 厚度相比的诊断准确性的曲线下面积(AUC)统计数据。
所有 4 种模型均达到了相似的高诊断准确性,AUC 值范围为 0.91 至 0.92。这些值明显高于同一患者人群中平均环周 RNFL 厚度的 AUC 值(0.76)。
与环周 RNFL 厚度相比,传统机器学习和卷积神经网络模型均实现了卓越的诊断性能。这支持了 RNFL 厚度图数据的空间结构在诊断青光眼方面的重要性,并进一步努力优化我们对这些数据的使用。