Suppr超能文献

原子级薄二硫化钼中缺陷的量化与修复:超越原子缺陷的可控生成

Quantification and Healing of Defects in Atomically Thin Molybdenum Disulfide: Beyond the Controlled Creation of Atomic Defects.

作者信息

Fujisawa Kazunori, Carvalho Bruno R, Zhang Tianyi, Perea-López Néstor, Lin Zhong, Carozo Victor, Ramos Sérgio L L M, Kahn Ethan, Bolotsky Adam, Liu He, Elías Ana Laura, Terrones Mauricio

机构信息

Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

出版信息

ACS Nano. 2021 Jun 22;15(6):9658-9669. doi: 10.1021/acsnano.0c10897. Epub 2021 Mar 23.

Abstract

Atomically thin 2D materials provide an opportunity to investigate the atomic-scale details of defects introduced by particle irradiation. Once the atomic configuration of defects and their spatial distribution are revealed, the details of the mesoscopic phenomena can be unveiled. In this work, we created atomically small defects by controlled irradiation of gallium ions with doses ranging from 4.94 × 10 to 4.00 × 10 ions/cm on monolayer molybdenum disulfide (MoS) crystals. The optical signatures of defects, such as the evolution of defect-activated LA-bands and a broadening of the first-order (' and ') modes, can be studied by Raman spectroscopy. High-resolution scanning transmission electron microscopy (HR-STEM) analysis revealed that most defects are vacancies of few-molybdenum atoms with surrounding sulfur atoms (V) at a low ion dose. When increasing the ion dose, the atomic vacancies merge and form nanometer-sized holes. Utilizing HR-STEM and image analysis, we propose the estimation of the finite crystal length () via the careful quantification of 0D defects in 2D systems through the formula = 4.41/, where η corresponds to the ion dose. Combining HR-STEM and Raman spectroscopy, the formula to calculate from Raman features, (LA)/(') = 5.09/, is obtained. We have also demonstrated an effective route to healing the ion irradiation-induced atomic vacancies by annealing defective MoS in a hydrogen disulfide (HS) atmosphere. The HS annealing improved the crystal quality of MoS with greater than the calculated size of the A exciton wave function, which leads to a partial recovery of the photoluminescence signal after its quenching by ion irradiation.

摘要

原子级薄的二维材料为研究粒子辐照引入的缺陷的原子尺度细节提供了契机。一旦揭示了缺陷的原子构型及其空间分布,就可以揭开介观现象的细节。在这项工作中,我们通过用剂量范围为4.94×10至4.00×10离子/cm的镓离子对单层二硫化钼(MoS)晶体进行可控辐照,制造出了原子级小的缺陷。可以通过拉曼光谱研究缺陷的光学特征,例如缺陷激活的LA带的演变以及一阶('和')模式的展宽。高分辨率扫描透射电子显微镜(HR-STEM)分析表明,在低离子剂量下,大多数缺陷是少数钼原子的空位,周围有硫原子(V)。当增加离子剂量时,原子空位合并并形成纳米尺寸的孔洞。利用HR-STEM和图像分析,我们通过公式 = 4.41/,通过仔细量化二维系统中的0D缺陷,提出了有限晶体长度()的估计方法,其中η对应于离子剂量。结合HR-STEM和拉曼光谱,得到了从拉曼特征计算的公式,(LA)/(') = 5.09/。我们还展示了一种通过在硫化氢(HS)气氛中对有缺陷的MoS进行退火来修复离子辐照诱导的原子空位的有效途径。HS退火提高了MoS的晶体质量,其大于A激子波函数计算尺寸,这导致在离子辐照使其猝灭后光致发光信号部分恢复。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验