Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom.
Magn Reson Med. 2021 Aug;86(2):1125-1136. doi: 10.1002/mrm.28768. Epub 2021 Mar 23.
Total kidney volume (TKV) is an important measure in renal disease detection and monitoring. We developed a fully automated method to segment the kidneys from T -weighted MRI to calculate TKV of healthy control (HC) and chronic kidney disease (CKD) patients.
This automated method uses machine learning, specifically a 2D convolutional neural network (CNN), to accurately segment the left and right kidneys from T -weighted MRI data. The data set consisted of 30 HC subjects and 30 CKD patients. The model was trained on 50 manually defined HC and CKD kidney segmentations. The model was subsequently evaluated on 50 test data sets, comprising data from 5 HCs and 5 CKD patients each scanned 5 times in a scan session to enable comparison of the precision of the CNN and manual segmentation of kidneys.
The unseen test data processed by the 2D CNN had a mean Dice score of 0.93 ± 0.01. The difference between manual and automatically computed TKV was 1.2 ± 16.2 mL with a mean surface distance of 0.65 ± 0.21 mm. The variance in TKV measurements from repeat acquisitions on the same subject was significantly lower using the automated method compared to manual segmentation of the kidneys.
The 2D CNN method provides fully automated segmentation of the left and right kidney and calculation of TKV in <10 s on a standard office computer, allowing high data throughput and is a freely available executable.
全肾体积(TKV)是检测和监测肾脏疾病的重要指标。我们开发了一种全自动方法,从 T 加权 MRI 中分割肾脏,以计算健康对照(HC)和慢性肾脏病(CKD)患者的 TKV。
这种自动化方法使用机器学习,特别是二维卷积神经网络(CNN),从 T 加权 MRI 数据中准确地分割左右肾脏。数据集包括 30 名 HC 受试者和 30 名 CKD 患者。该模型在 50 个手动定义的 HC 和 CKD 肾脏分割上进行了训练。随后,该模型在 50 个测试数据集上进行了评估,每个数据集由 5 名 HC 和 5 名 CKD 患者的数据组成,这些患者在一次扫描中扫描了 5 次,以比较 CNN 和手动分割肾脏的精度。
由 2D CNN 处理的未见测试数据的平均 Dice 评分分别为 0.93±0.01。手动和自动计算的 TKV 之间的差异为 1.2±16.2mL,平均表面距离为 0.65±0.21mm。与手动分割肾脏相比,使用自动方法对同一受试者的重复采集进行 TKV 测量的方差显著降低。
2D CNN 方法提供了全自动的左右肾脏分割和 TKV 计算,在标准办公计算机上耗时不到 10 秒,允许高数据吞吐量,并且是一个免费提供的可执行文件。