Suppr超能文献

一种基于无偏相关性检验的新型方法,用于非线性混合效应模型中的协变量选择:COSSAC 方法。

A novel method based on unbiased correlations tests for covariate selection in nonlinear mixed effects models: The COSSAC approach.

机构信息

Lixoft, Antony, France.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2021 Apr;10(4):318-329. doi: 10.1002/psp4.12612.

Abstract

Building a covariate model is a crucial task in population pharmacokinetics and pharmacodynamics in order to understand the determinants of the interindividual variability. Identifying a good covariate model usually requires many runs. Several procedures have been proposed in the past to automatize this task. The most commonly used is Stepwise Covariate Modeling (SCM). Here, we present a novel stepwise method based on statistical tests between individual parameters sampled from their conditional distribution and the covariates. This strategy, called the COnditional Sampling use for Stepwise Approach based on Correlation tests (COSSAC), makes use of the information contained in the current model to choose which parameter-covariate relationship to try next. This strategy greatly reduces the number of covariate models tested, while retaining on its search path the models improving the log-likelihood (LL). In this article, we detail the COSSAC method and its implementation in Monolix, and evaluate its performance. The performance was assessed by comparing COSSAC to the traditional SCM method on 17 representative data sets. For the large majority of cases (15 out of 17), the final covariate model is identical (11 cases) or very similar (4 cases with LL differences less than 3.84) with both procedures. Yet, COSSAC requires between 2 to 20 times fewer runs than SCM. This represents a decisive speed up, especially for models that take long to run and would not be tractable using the SCM method.

摘要

建立协变量模型是群体药代动力学和药效学中的一项关键任务,以便了解个体间变异性的决定因素。确定一个好的协变量模型通常需要多次运行。过去已经提出了几种程序来自动化这项任务。最常用的方法是逐步协变量建模(SCM)。在这里,我们提出了一种新的基于从条件分布中抽样的个体参数与协变量之间的统计检验的逐步方法。这种策略称为基于相关性检验的条件抽样逐步方法(COSSAC),它利用当前模型中包含的信息来选择要尝试的下一个参数-协变量关系。该策略大大减少了测试的协变量模型的数量,同时保留了对提高对数似然度(LL)有帮助的模型。在本文中,我们详细介绍了 COSSAC 方法及其在 Monolix 中的实现,并评估了其性能。通过将 COSSAC 与传统的 SCM 方法在 17 个有代表性的数据集上进行比较,评估了其性能。对于绝大多数情况(17 个案例中的 15 个),最终的协变量模型与两种方法完全相同(11 个案例)或非常相似(4 个案例的 LL 差异小于 3.84)。然而,COSSAC 所需的运行次数比 SCM 少 2 到 20 倍。这代表了一个决定性的加速,特别是对于那些运行时间长且使用 SCM 方法不可行的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6930/8099437/dbc98f9a9f07/PSP4-10-318-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验