Suppr超能文献

超分子纳米土星配合物中最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)能级的可控调节

Controlled tuning of HOMO and LUMO levels in supramolecular nano-Saturn complexes.

作者信息

Maqbool Maria, Ayub Khurshid

机构信息

Department of Chemistry, COMSATS University Abbottabad Campus KPK 22060 Pakistan

出版信息

RSC Adv. 2024 Dec 12;14(53):39395-39407. doi: 10.1039/d4ra07068b. eCollection 2024 Dec 10.

Abstract

Optoelectronics usually deals with the fabrication of devices that can interconvert light and electrical energy using semiconductors. The modification of electronic properties is crucial in the field of optoelectronics. The tuning of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and their energy gaps is of paramount interest in this domain. Herein, three nano-Saturn supramolecular complex systems are designed, , AlN@S-belt, MgO@S-belt, and BP@S-belt, using S-belt as the host and AlN, MgO, and BP nanocages as guests. The high interaction energies ranging from -22.03 to -63.64 kcal mol for the complexes demonstrate the stability of these host-guest complexes. Frontier molecular orbital (FMO) analysis shows that the HOMO of the complexes originates from the HOMO of the host, and the LUMO of the complexes originate entirely from the LUMO of the guests. The partial density of states (PDOS) analysis is in corroboration with FMO, which provides graphical illustration of the origin of HOMO and LUMO levels and the energy gaps. The shift in the electron density upon complexation is demonstrated by the natural bond orbital (NBO) charge analysis. For the AlN@S-belt and BP@S-belt complexes, the direction of electron density shift is towards the guest species, as indicated by the overall negative charge on encapsulated AlN and BP. For the MgO@S-belt complex, the overall NBO charge is positive, elaborating the direction of overall shift of electronic density towards the S-belt. Electron density difference (EDD) analysis verifies and corroborates with these findings. Noncovalent interaction index (NCI) and quantum theory of atoms in molecules (QTAIM) analyses signify that the complexes are stabilized van der Waals interactions. Absorption analysis explains that all the complexes absorb in the ultraviolet (UV) region. Overall, this study explains the formation of stable host-guest supramolecular nano-Saturn complexes along with the controlled tuning of HOMO and LUMO levels over the host and guests, respectively.

摘要

光电子学通常涉及使用半导体制造能够将光能和电能相互转换的器件。电子性质的改变在光电子学领域至关重要。最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)及其能隙的调节在该领域具有至关重要的意义。在此,设计了三种纳米土星超分子复合体系,即AlN@S带、MgO@S带和BP@S带,以S带为主客体,AlN、MgO和BP纳米笼为客体。这些复合物的高相互作用能在-22.03至-63.64 kcal mol范围内,证明了这些主客体复合物的稳定性。前沿分子轨道(FMO)分析表明,复合物的HOMO源于主体的HOMO,复合物的LUMO完全源于客体的LUMO。态密度(PDOS)分析与FMO一致,它提供了HOMO和LUMO能级起源以及能隙的图形说明。自然键轨道(NBO)电荷分析证明了络合时电子密度的变化。对于AlN@S带和BP@S带复合物,电子密度转移方向朝向客体物种,如封装的AlN和BP上的整体负电荷所示。对于MgO@S带复合物,整体NBO电荷为正,说明了电子密度向S带整体转移的方向。电子密度差(EDD)分析验证并证实了这些发现。非共价相互作用指数(NCI)和分子中原子的量子理论(QTAIM)分析表明,这些复合物通过范德华相互作用得以稳定。吸收分析表明,所有复合物都在紫外(UV)区域吸收。总体而言,本研究解释了稳定的主客体超分子纳米土星复合物的形成,以及分别在主体和客体上对HOMO和LUMO能级的可控调节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb66/11636639/ac108daa208f/d4ra07068b-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验