Suppr超能文献

预先筛选工人,以克服在线劳动力市场中的偏见放大。

Pre-screening workers to overcome bias amplification in online labour markets.

机构信息

Centre for Environmental Policy, Imperial College London, London, United Kingdom.

Philosophy Department, UNC Chapel Hill, Chapel Hill, NC, United States of America.

出版信息

PLoS One. 2021 Mar 23;16(3):e0249051. doi: 10.1371/journal.pone.0249051. eCollection 2021.

Abstract

Groups have access to more diverse information and typically outperform individuals on problem solving tasks. Crowdsolving utilises this principle to generate novel and/or superior solutions to intellective tasks by pooling the inputs from a distributed online crowd. However, it is unclear whether this particular instance of "wisdom of the crowd" can overcome the influence of potent cognitive biases that habitually lead individuals to commit reasoning errors. We empirically test the prevalence of cognitive bias on a popular crowdsourcing platform, examining susceptibility to bias of online panels at the individual and aggregate levels. We then investigate the use of the Cognitive Reflection Test, notable for its predictive validity for both susceptibility to cognitive biases in test settings and real-life reasoning, as a screening tool to improve collective performance. We find that systematic biases in crowdsourced answers are not as prevalent as anticipated, but when they occur, biases are amplified with increasing group size, as predicted by the Condorcet Jury Theorem. The results further suggest that pre-screening individuals with the Cognitive Reflection Test can substantially enhance collective judgement and improve crowdsolving performance.

摘要

群体可以获得更多样化的信息,并且通常在解决问题的任务上表现优于个体。众包利用这一原则,通过汇集分布式在线人群的输入,为智力任务生成新颖和/或优越的解决方案。然而,目前尚不清楚这种特定的“群体智慧”是否能够克服强大的认知偏见的影响,这些偏见通常会导致个体犯推理错误。我们在一个流行的众包平台上进行实证测试,研究个体和总体层面上在线群体对偏见的易感性。然后,我们研究了认知反射测试的使用,该测试因其在测试环境和现实生活推理中对认知偏差易感性的预测有效性而引人注目,作为一种提高集体绩效的筛选工具。我们发现,众包答案中的系统偏差并不像预期的那样普遍,但当它们发生时,随着群体规模的增加,偏差会被放大,这正如 Condorcet 陪审团定理所预测的那样。结果进一步表明,使用认知反射测试对个体进行预先筛选可以显著提高集体判断能力并改善众包解决方案的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/7987151/d875590f519a/pone.0249051.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验