Suppr超能文献

利用3D打印微流控芯片构建神经血管类器官

Engineering neurovascular organoids with 3D printed microfluidic chips.

作者信息

Salmon Idris, Grebenyuk Sergei, Abdel Fattah Abdel Rahman, Rustandi Gregorius, Pilkington Thomas, Verfaillie Catherine, Ranga Adrian

机构信息

Laboratory of Bioengineering and Morphogenesis, Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.

FabLab Leuven, KU Leuven Research & Development, Belgium.

出版信息

Lab Chip. 2022 Apr 12;22(8):1615-1629. doi: 10.1039/d1lc00535a.

Abstract

The generation of tissue and organs requires close interaction with vasculature from the earliest moments of embryonic development. Tissue-specific organoids derived from pluripotent stem cells allow for the recapitulation of elements of embryonic development. However, they are not intrinsically vascularized, which poses a major challenge for their sustained growth, and for understanding the role of vasculature in fate specification and morphogenesis. Current organoid vascularization strategies do not recapitulate the temporal synchronization and spatial orientation needed to ensure -like early co-development. Here, we developed a human pluripotent stem cell (hPSC)-based approach to generate organoids which interact with vascular cells in a spatially determined manner. The spatial interaction between organoid and vasculature is enabled by the use of a custom designed 3D printed microfluidic chip which allows for a sequential and developmentally matched co-culture system. We show that on-chip hPSC-derived pericytes and endothelial cells sprout and self-assemble into organized vascular networks, and use cerebral organoids as a model system to explore interactions with this generated vasculature. Upon co-development, vascular cells physically interact with the cerebral organoid and form an integrated neurovascular organoid on chip. This 3D printing-based platform is designed to be compatible with any organoid system and is an easy and highly cost-effective way to vascularize organoids. The use of this platform, readily performed in any lab, could open new avenues for understanding and manipulating the co-development of tissue-specific organoids with vasculature.

摘要

从胚胎发育的最初阶段起,组织和器官的生成就需要与脉管系统密切相互作用。源自多能干细胞的组织特异性类器官能够重现胚胎发育的某些要素。然而,它们本身没有血管化,这对其持续生长以及理解脉管系统在命运决定和形态发生中的作用构成了重大挑战。目前的类器官血管化策略无法重现确保类似早期共同发育所需的时间同步和空间定向。在此,我们开发了一种基于人多能干细胞(hPSC)的方法来生成能以空间确定的方式与血管细胞相互作用的类器官。类器官与脉管系统之间的空间相互作用通过使用定制设计的3D打印微流控芯片得以实现,该芯片允许建立一个顺序且发育匹配的共培养系统。我们表明,芯片上源自hPSC的周细胞和内皮细胞能够发芽并自组装成有组织的血管网络,并以脑类器官作为模型系统来探索与这种生成的脉管系统的相互作用。在共同发育过程中,血管细胞与脑类器官发生物理相互作用,并在芯片上形成一个整合的神经血管类器官。这个基于3D打印的平台设计为与任何类器官系统兼容,是一种简单且成本效益高的使类器官血管化的方法。在任何实验室都能轻松使用这个平台,这可能为理解和操控组织特异性类器官与脉管系统的共同发育开辟新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验