Suppr超能文献

计算肺部 CT 图像中的感染分布和纵向演变模式。

Computing infection distributions and longitudinal evolution patterns in lung CT images.

机构信息

Hunan University, Changsha, China.

Shanghai United Imaging Intelligence Co., Ltd, Shanghai, China.

出版信息

BMC Med Imaging. 2021 Mar 23;21(1):57. doi: 10.1186/s12880-021-00588-2.

Abstract

BACKGROUND

Spatial and temporal lung infection distributions of coronavirus disease 2019 (COVID-19) and their changes could reveal important patterns to better understand the disease and its time course. This paper presents a pipeline to analyze statistically these patterns by automatically segmenting the infection regions and registering them onto a common template.

METHODS

A VB-Net is designed to automatically segment infection regions in CT images. After training and validating the model, we segmented all the CT images in the study. The segmentation results are then warped onto a pre-defined template CT image using deformable registration based on lung fields. Then, the spatial distributions of infection regions and those during the course of the disease are calculated at the voxel level. Visualization and quantitative comparison can be performed between different groups. We compared the distribution maps between COVID-19 and community acquired pneumonia (CAP), between severe and critical COVID-19, and across the time course of the disease.

RESULTS

For the performance of infection segmentation, comparing the segmentation results with manually annotated ground-truth, the average Dice is 91.6% ± 10.0%, which is close to the inter-rater difference between two radiologists (the Dice is 96.1% ± 3.5%). The distribution map of infection regions shows that high probability regions are in the peripheral subpleural (up to 35.1% in probability). COVID-19 GGO lesions are more widely spread than consolidations, and the latter are located more peripherally. Onset images of severe COVID-19 (inpatients) show similar lesion distributions but with smaller areas of significant difference in the right lower lobe compared to critical COVID-19 (intensive care unit patients). About the disease course, critical COVID-19 patients showed four subsequent patterns (progression, absorption, enlargement, and further absorption) in our collected dataset, with remarkable concurrent HU patterns for GGO and consolidations.

CONCLUSIONS

By segmenting the infection regions with a VB-Net and registering all the CT images and the segmentation results onto a template, spatial distribution patterns of infections can be computed automatically. The algorithm provides an effective tool to visualize and quantify the spatial patterns of lung infection diseases and their changes during the disease course. Our results demonstrate different patterns between COVID-19 and CAP, between severe and critical COVID-19, as well as four subsequent disease course patterns of the severe COVID-19 patients studied, with remarkable concurrent HU patterns for GGO and consolidations.

摘要

背景

2019 年冠状病毒病(COVID-19)的肺部感染的时空分布及其变化可以揭示重要的模式,从而更好地了解疾病及其时间进程。本文提出了一种通过自动分割感染区域并将其注册到通用模板上来分析这些模式的流水线。

方法

设计了一个 VB-Net 来自动分割 CT 图像中的感染区域。在对模型进行训练和验证后,我们对研究中的所有 CT 图像进行了分割。然后,使用基于肺场的可变形配准将分割结果变形到预定义的模板 CT 图像上。然后,在体素水平上计算感染区域的空间分布及其在疾病过程中的分布。可以在不同组之间进行可视化和定量比较。我们比较了 COVID-19 与社区获得性肺炎(CAP)、严重 COVID-19 与危重症 COVID-19 以及疾病病程中的分布图谱。

结果

对于感染分割的性能,将分割结果与手动标注的金标准进行比较,平均 Dice 为 91.6%±10.0%,接近于两名放射科医生之间的组内差异(Dice 为 96.1%±3.5%)。感染区域的分布图谱显示,高概率区域位于外周胸膜下(概率高达 35.1%)。COVID-19 的磨玻璃影病变比实变病变分布更广,而后者位于更外周的位置。严重 COVID-19(住院患者)的起始图像显示出相似的病变分布,但与危重症 COVID-19(重症监护病房患者)相比,右下叶的显著差异面积较小。关于疾病病程,在我们收集的数据集,危重症 COVID-19 患者显示了四种后续模式(进展、吸收、增大和进一步吸收),同时 GGO 和实变的相应 HU 模式也有显著变化。

结论

通过使用 VB-Net 分割感染区域,并将所有 CT 图像及其分割结果注册到模板上,可以自动计算感染的空间分布模式。该算法为可视化和量化肺部感染疾病及其在疾病过程中的变化的空间模式提供了有效的工具。我们的结果表明 COVID-19 与 CAP、严重 COVID-19 与危重症 COVID-19 之间存在不同的模式,以及研究中严重 COVID-19 患者的四种后续疾病病程模式,同时 GGO 和实变的相应 HU 模式也有显著变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d93/7988946/82727bc244da/12880_2021_588_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验