Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA.
Mol Cell Proteomics. 2021;20:100073. doi: 10.1016/j.mcpro.2021.100073. Epub 2021 Mar 20.
Silver nanoparticles (AgNPs) are widely used nanomaterials in both commercial and clinical biomedical applications, but the molecular mechanisms underlying their activity remain elusive. In this study we profiled proteomics and redox proteomics changes induced by AgNPs in two lung cancer cell lines: AgNPs-sensitive Calu-1 and AgNPs-resistant NCI-H358. We show that AgNPs induce changes in protein abundance and reversible oxidation in a time and cell-line-dependent manner impacting critical cellular processes such as protein translation and modification, lipid metabolism, bioenergetics, and mitochondrial dynamics. Supporting confocal microscopy and transmission electron microscopy (TEM) data further emphasize mitochondria as a target of AgNPs toxicity differentially impacting mitochondrial networks and morphology in Calu-1 and NCI-H358 lung cells. Proteomics data are available via ProteomeXchange with identifier PXD021493.
银纳米粒子(AgNPs)在商业和临床生物医学应用中被广泛应用,但其活性的分子机制仍难以捉摸。在这项研究中,我们对两种肺癌细胞系(AgNPs 敏感的 Calu-1 和 AgNPs 耐药的 NCI-H358)中 AgNPs 诱导的蛋白质组学和氧化还原蛋白质组学变化进行了分析。我们发现,AgNPs 以时间和细胞系依赖的方式诱导蛋白质丰度和可逆氧化的变化,影响关键的细胞过程,如蛋白质翻译和修饰、脂质代谢、生物能量和线粒体动力学。支持共聚焦显微镜和透射电子显微镜(TEM)数据进一步强调了线粒体作为 AgNPs 毒性的靶标,这对 Calu-1 和 NCI-H358 肺细胞中的线粒体网络和形态产生了不同的影响。蛋白质组学数据可通过 ProteomeXchange 以标识符 PXD021493 获得。