Suppr超能文献

肥胖相关脂肪因子趋化素抑制脂肪酸氧化以赋予铁死亡抗性。

Obesity-Dependent Adipokine Chemerin Suppresses Fatty Acid Oxidation to Confer Ferroptosis Resistance.

机构信息

Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.

Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida.

出版信息

Cancer Discov. 2021 Aug;11(8):2072-2093. doi: 10.1158/2159-8290.CD-20-1453. Epub 2021 Mar 23.

Abstract

Clear cell renal cell carcinoma (ccRCC) is characterized by accumulation of neutral lipids and adipogenic transdifferentiation. We assessed adipokine expression in ccRCC and found that tumor tissues and patient plasma exhibit obesity-dependent elevations of the adipokine chemerin. Attenuation of chemerin by several approaches led to significant reduction in lipid deposition and impairment of tumor cell growth and . A multi-omics approach revealed that chemerin suppresses fatty acid oxidation, preventing ferroptosis, and maintains fatty acid levels that activate hypoxia-inducible factor 2α expression. The lipid coenzyme Q and mitochondrial complex IV, whose biogeneses are lipid-dependent, were found to be decreased after chemerin inhibition, contributing to lipid reactive oxygen species production. Monoclonal antibody targeting chemerin led to reduced lipid storage and diminished tumor growth, demonstrating translational potential of chemerin inhibition. Collectively, the results suggest that obesity and tumor cells contribute to ccRCC through the expression of chemerin, which is indispensable in ccRCC biology. SIGNIFICANCE: Identification of a hypoxia-inducible factor-dependent adipokine that prevents fatty acid oxidation and causes escape from ferroptosis highlights a critical metabolic dependency unique in the clear cell subtype of kidney cancer. Targeting lipid metabolism via inhibition of a soluble factor is a promising pharmacologic approach to expand therapeutic strategies for patients with ccRCC...

摘要

透明细胞肾细胞癌(ccRCC)的特征是中性脂质积累和脂肪生成转化。我们评估了 ccRCC 中的脂肪因子表达,发现肿瘤组织和患者血浆中存在肥胖依赖性的脂肪因子趋化素升高。通过多种方法减弱趋化素表达可显著减少脂质沉积并损害肿瘤细胞生长。多组学方法表明,趋化素抑制脂肪酸氧化,防止铁死亡,并维持激活缺氧诱导因子 2α表达的脂肪酸水平。脂质辅酶 Q 和线粒体复合物 IV 的生物合成依赖于脂质,在趋化素抑制后发现其减少,导致脂质活性氧的产生。针对趋化素的单克隆抗体导致脂质储存减少和肿瘤生长减少,证明了趋化素抑制的转化潜力。总的来说,这些结果表明肥胖和肿瘤细胞通过趋化素的表达导致 ccRCC,趋化素在 ccRCC 生物学中是不可或缺的。意义:鉴定出一种缺氧诱导因子依赖性脂肪因子,可防止脂肪酸氧化并导致逃避铁死亡,这突出了在肾脏透明细胞癌亚型中独特的关键代谢依赖性。通过抑制可溶性因子来靶向脂质代谢是一种很有前途的药物治疗方法,可以为 ccRCC 患者扩展治疗策略。

相似文献

1
Obesity-Dependent Adipokine Chemerin Suppresses Fatty Acid Oxidation to Confer Ferroptosis Resistance.
Cancer Discov. 2021 Aug;11(8):2072-2093. doi: 10.1158/2159-8290.CD-20-1453. Epub 2021 Mar 23.
2
Chemerin Tips the Scales in ccRCC to Evade Ferroptosis.
Cancer Discov. 2021 Aug;11(8):1879-1880. doi: 10.1158/2159-8290.CD-21-0610.
3
Metabolic Modulation of Clear-cell Renal Cell Carcinoma with Dichloroacetate, an Inhibitor of Pyruvate Dehydrogenase Kinase.
Eur Urol. 2016 Apr;69(4):734-744. doi: 10.1016/j.eururo.2015.09.014. Epub 2016 Feb 18.
5
GPR1 and CMKLR1 Control Lipid Metabolism to Support the Development of Clear Cell Renal Cell Carcinoma.
Cancer Res. 2024 Jul 2;84(13):2141-2154. doi: 10.1158/0008-5472.CAN-23-2926.
6
Fatty Acid Oxidation Mediated by Malonyl-CoA Decarboxylase Represses Renal Cell Carcinoma Progression.
Cancer Res. 2023 Dec 1;83(23):3920-3939. doi: 10.1158/0008-5472.CAN-23-0969.
7
Lipid in Renal Carcinoma: Queen Bee to Target?
Trends Cancer. 2020 Jun;6(6):448-450. doi: 10.1016/j.trecan.2020.02.017. Epub 2020 Mar 17.

引用本文的文献

6
ZIP8 modulates ferroptosis to drive esophageal carcinoma progression.
Cell Death Dis. 2025 May 6;16(1):366. doi: 10.1038/s41419-025-07692-z.
7
Active Forms of Chemerin Are Elevated in Human and Mouse Ovarian Carcinoma.
Biomedicines. 2025 Apr 18;13(4):991. doi: 10.3390/biomedicines13040991.
8
Emerging roles for fatty acid oxidation in cancer.
Genes Dis. 2024 Dec 20;12(4):101491. doi: 10.1016/j.gendis.2024.101491. eCollection 2025 Jul.
10

本文引用的文献

1
A Screened GPR1 Peptide Exerts Antitumor Effects on Triple-Negative Breast Cancer.
Mol Ther Oncolytics. 2020 Aug 25;18:602-612. doi: 10.1016/j.omto.2020.08.013. eCollection 2020 Sep 25.
2
Epidemiology of Renal Cell Carcinoma.
World J Oncol. 2020 Jun;11(3):79-87. doi: 10.14740/wjon1279. Epub 2020 May 14.
3
Lipid in Renal Carcinoma: Queen Bee to Target?
Trends Cancer. 2020 Jun;6(6):448-450. doi: 10.1016/j.trecan.2020.02.017. Epub 2020 Mar 17.
4
A lipid perspective on regulated cell death.
Int Rev Cell Mol Biol. 2020;351:197-236. doi: 10.1016/bs.ircmb.2019.11.004. Epub 2019 Dec 18.
5
New insights into the obesity paradox in renal cell carcinoma.
Nat Rev Nephrol. 2020 May;16(5):253-254. doi: 10.1038/s41581-020-0264-y.
6
From Synthesis to Utilization: The Ins and Outs of Mitochondrial Heme.
Cells. 2020 Feb 29;9(3):579. doi: 10.3390/cells9030579.
8
Chemerin in immune response and gastrointestinal pathophysiology.
Clin Chim Acta. 2020 May;504:146-153. doi: 10.1016/j.cca.2020.02.008. Epub 2020 Feb 17.
9
Construction of a novel gene-based model for prognosis prediction of clear cell renal cell carcinoma.
Cancer Cell Int. 2020 Jan 28;20:27. doi: 10.1186/s12935-020-1113-6. eCollection 2020.
10
The Future of Immunotherapy-Based Combination Therapy in Metastatic Renal Cell Carcinoma.
Cancers (Basel). 2020 Jan 7;12(1):143. doi: 10.3390/cancers12010143.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验