Mende S B, Frey H U, Rider K, Chou C, Harris S E, Siegmund O H W, England S L, Wilkins C, Craig W, Immel T J, Turin P, Darling N, Loicq J, Blain P, Syrstad E, Thompson B, Burt R, Champagne J, Sevilla P, Ellis S
UCB.
Centre Spatial de Liege (CSL).
Space Sci Rev. 2017 Oct;212:655-696. doi: 10.1007/s11214-017-0386-0. Epub 2017 Aug 1.
ICON Far UltraViolet (FUV) imager contributes to the ICON science objectives by providing remote sensing measurements of the daytime and nighttime atmosphere/ionosphere. During sunlit atmospheric conditions, ICON FUV images the limb altitude profile in the shortwave (SW) band at 135.6 nm and the longwave (LW) band at 157 nm perpendicular to the satellite motion to retrieve the atmospheric O/N ratio. In conditions of atmospheric darkness, ICON FUV measures the 135.6 nm recombination emission of O ions used to compute the nighttime ionospheric altitude distribution. ICON Far UltraViolet (FUV) imager is a CzernyTurner design Spectrographic Imager with two exit slits and corresponding back imager cameras that produce two independent images in separate wavelength bands on two detectors. All observations will be processed as limb altitude profiles. In addition, the ionospheric 135.6 nm data will be processed as longitude and latitude spatial maps to obtain images of ion distributions around regions of equatorial spread F. The ICON FUV optic axis is pointed 20 degrees below local horizontal and has a steering mirror that allows the field of view to be steered up to 30 degrees forward and aft, to keep the local magnetic meridian in the field of view. The detectors are micro channel plate (MCP) intensified FUV tubes with the phosphor fiber-optically coupled to Charge Coupled Devices (CCDs). The dual stack MCP-s amplify the photoelectron signals to dominate the CCD noise and the rapidly scanned frames are co-added to digitally create 12-second integrated images. Digital on-board signal processing is used to compensate for geometric distortion and satellite motion and to achieve data compression. The instrument was originally aligned in visible light by using a special grating and visible cameras. Final alignment, functional and environmental testing and calibration were performed in a large vacuum chamber with a UV source. The test and calibration program showed that ICON FUV meets its design requirements and is ready to be launched on the ICON spacecraft.
ICON远紫外(FUV)成像仪通过提供白天和夜间大气/电离层的遥感测量数据,助力ICON的科学目标实现。在日照大气条件下,ICON FUV在垂直于卫星运动方向上,对135.6纳米的短波(SW)波段和157纳米的长波(LW)波段的边缘高度剖面进行成像,以反演大气中的氧氮比。在大气黑暗条件下,ICON FUV测量用于计算夜间电离层高度分布的氧离子135.6纳米复合辐射。ICON远紫外(FUV)成像仪是一种切尔尼-特纳设计的光谱成像仪,有两个出射狭缝和相应的背成像相机,可在两个探测器上的不同波长波段产生两个独立图像。所有观测数据都将作为边缘高度剖面进行处理。此外,电离层135.6纳米数据将被处理为经度和纬度空间图,以获取赤道扩展F区域周围离子分布的图像。ICON FUV光轴指向当地水平以下20度,并有一个转向镜,可使视场向前和向后最多转向30度,以将当地磁子午线保持在视场内。探测器是微通道板(MCP)增强型FUV管,其荧光体通过光纤耦合到电荷耦合器件(CCD)。双叠层MCP对光电子信号进行放大,使其在CCD噪声中占主导地位,并将快速扫描的帧进行叠加,以数字方式创建12秒的积分图像。采用机载数字信号处理来补偿几何畸变和卫星运动,并实现数据压缩。该仪器最初通过使用特殊光栅和可见光相机在可见光下进行对准。最终对准、功能和环境测试以及校准在一个带有紫外光源的大型真空室中进行。测试和校准程序表明,ICON FUV满足其设计要求,准备在ICON航天器上发射。