Deressa Chernet Tuge, Duressa Gemechis File
Department of Mathematics, College of Natural Sciences, Jimma University, Jimma, Ethiopia.
Adv Differ Equ. 2021;2021(1):174. doi: 10.1186/s13662-021-03334-8. Epub 2021 Mar 19.
We consider a SEAIR epidemic model with Atangana-Baleanu fractional-order derivative. We approximate the solution of the model using the numerical scheme developed by Toufic and Atangana. The numerical simulation corresponding to several fractional orders shows that, as the fractional order reduces from 1, the spread of the endemic grows slower. Optimal control analysis and simulation show that the control strategy designed is operative in reducing the number of cases in different compartments. Moreover, simulating the optimal profile revealed that reducing the fractional-order from 1 leads to the need for quick starting of the application of the designed control strategy at the maximum possible level and maintaining it for the majority of the period of the pandemic.
我们考虑一个具有阿坦加纳 - 巴莱努分数阶导数的SEAIR传染病模型。我们使用图菲克和阿坦加纳开发的数值格式来近似该模型的解。对应于几个分数阶的数值模拟表明,随着分数阶从1减小,地方病的传播速度变慢。最优控制分析和模拟表明,所设计的控制策略在减少不同 compartment 中的病例数方面是有效的。此外,模拟最优曲线表明,将分数阶从1降低会导致需要在大流行期间的大部分时间内以尽可能高的水平尽快启动所设计控制策略的应用并维持它。