Suppr超能文献

组学技术在皮肤科研究和皮肤管理中的应用。

Application of omics technologies in dermatological research and skin management.

机构信息

Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.

Key Laboratory of Cosmetic of China National Light Industry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.

出版信息

J Cosmet Dermatol. 2022 Feb;21(2):451-460. doi: 10.1111/jocd.14100. Epub 2021 Apr 1.

Abstract

BACKGROUND

"Omics" are usually based on the use of high-throughput analysis methods for global analysis of biological samples and the discovery of biomarkers, and may provide new insights into biological phenomena. Over the last few years, the development of omics technologies has considerably accelerated the pace of dermatological research.

AIMS

The purpose of this article was to review the development of omics in recent decades and their application in dermatological research.

METHODS

An extensive literature search was conducted on omics technologies since the first research on omics.

RESULTS

This article summarizes the history and main research methods of the six omics technologies, including genomics, transcriptomics, proteomics, metabolomics, lipidomics, and microbiomics. Their application in certain skin diseases and cosmetics research and development are also summarized.

CONCLUSIONS

This information will help to understand the mechanism of some skin diseases and the discovery of potential biomarkers, and provide new insights for skin health management and cosmetics research and development.

摘要

背景

“组学”通常基于高通量分析方法对生物样本进行全面分析和生物标志物的发现,可能为生物现象提供新的见解。在过去的几年中,组学技术的发展极大地加快了皮肤科研究的步伐。

目的

本文旨在综述近几十年来组学的发展及其在皮肤科研究中的应用。

方法

对组学相关的研究进行了广泛的文献检索,追溯到组学研究的早期。

结果

本文总结了包括基因组学、转录组学、蛋白质组学、代谢组学、脂质组学和微生物组学在内的六种组学技术的历史和主要研究方法。还总结了它们在某些皮肤病和化妆品研发中的应用。

结论

这些信息将有助于了解某些皮肤病的发病机制和潜在生物标志物的发现,并为皮肤健康管理和化妆品研发提供新的思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验