Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, 23284, USA.
Adv Biol (Weinh). 2021 Jun;5(6):e2000592. doi: 10.1002/adbi.202000592. Epub 2021 Mar 24.
Cell fragments devoid of the nucleus play an essential role in intercellular communication. Mostly studied on flat 2D substrates, their origins and behavior in native fibrous environments remain unknown. Here, cytoplasmic fragments' spontaneous formation and behavior in suspended extracellular matrices mimicking fiber architectures (parallel, crosshatch, and hexagonal) are described. After cleaving from the parent cell body, the fragments of diverse shapes on fibers migrate faster compared to 2D. Furthermore, while fragments in 2D are mostly circular, a higher number of rectangular and blob-like shapes are formed on fibers, and, interestingly, each shape is capable of forming protrusive structures. Absent in 2D, fibers' fragments display oscillatory migratory behavior with dramatic shape changes, sometimes remarkably sustained over long durations (>20 h). Immunostaining reveals paxillin distribution along fragment body-fiber length, while Forster Resonance Energy Transfer imaging of vinculin reveals mechanical loading of fragment adhesions comparable to whole cell adhesions. Using nanonet force microscopy, the forces exerted by fragments are estimated, and peculiarly small area fragments can exert forces similar to larger fragments in a Rho-associated kinase dependent manner. Overall, fragment dynamics on 2D substrates are insufficient to describe the mechanosensitivity of fragments to fibers, and the architecture of fiber networks can generate entirely new behaviors.
无核细胞碎片在细胞间通讯中发挥着重要作用。这些细胞碎片主要在二维(2D)基底上进行研究,其在天然纤维环境中的起源和行为尚不清楚。本文描述了细胞质碎片在模拟纤维结构(平行、交错和六边形)的悬浮细胞外基质中自发形成和行为。从母细胞体上分裂后,纤维上各种形状的碎片比在 2D 上迁移得更快。此外,虽然 2D 上的碎片大多是圆形的,但在纤维上形成了更多的矩形和块状形状,有趣的是,每种形状都能够形成突起结构。在 2D 上不存在的是,纤维碎片表现出具有剧烈形状变化的振荡迁移行为,有时甚至可以长时间持续(>20 小时)。免疫染色显示质膜黏着蛋白沿着碎片-纤维全长分布,而黏着斑蛋白的荧光共振能量转移成像显示碎片黏附处的机械负载与整个细胞黏附处相当。使用纳米网力显微镜估计了碎片施加的力,并且特别小面积的碎片可以以依赖 Rho 相关激酶的方式施加与较大碎片相当的力。总体而言,2D 基底上的碎片动力学不足以描述碎片对纤维的机械敏感性,纤维网络的结构可以产生全新的行为。