Suppr超能文献

细胞-基质黏附处中单个应力纤维的 vinculin 张力分布。

Vinculin tension distributions of individual stress fibers within cell-matrix adhesions.

机构信息

Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA.

出版信息

J Cell Sci. 2013 Jul 15;126(Pt 14):3021-30. doi: 10.1242/jcs.119032. Epub 2013 May 17.

Abstract

Actomyosin stress fibers (SFs) enable cells to exert traction on planar extracellular matrices (ECMs) by tensing focal adhesions (FAs) at the cell-ECM interface. Although it is widely appreciated that the spatial and temporal distribution of these tensile forces play key roles in polarity, motility, fate choice, and other defining cell behaviors, virtually nothing is known about how an individual SF quantitatively contributes to tensile loads borne by specific molecules within associated FAs. We address this key open question by using femtosecond laser ablation to sever single SFs in cells while tracking tension across vinculin using a molecular optical sensor. We show that disruption of a single SF reduces tension across vinculin in FAs located throughout the cell, with enriched vinculin tension reduction in FAs oriented parallel to the targeted SF. Remarkably, however, some subpopulations of FAs exhibit enhanced vinculin tension upon SF irradiation and undergo dramatic, unexpected transitions between tension-enhanced and tension-reduced states. These changes depend strongly on the location of the severed SF, consistent with our earlier finding that different SF pools are regulated by distinct myosin activators. We critically discuss the extent to which these measurements can be interpreted in terms of whole-FA tension and traction and propose a model that relates SF tension to adhesive loads and cell shape stability. These studies represent the most direct and high-resolution intracellular measurements of SF contributions to tension on specific FA proteins to date and offer a new paradigm for investigating regulation of adhesive complexes by cytoskeletal force.

摘要

肌动球蛋白应力纤维 (SFs) 通过在细胞-ECM 界面处拉紧粘着斑 (FAs),使细胞能够对平面细胞外基质 (ECMs) 施加牵引力。尽管人们广泛认为这些张力的空间和时间分布在极性、运动性、命运选择和其他定义细胞行为方面起着关键作用,但实际上,人们几乎不知道单个 SF 如何定量地为相关 FA 中特定分子承受的拉伸载荷做出贡献。我们通过使用飞秒激光烧蚀在细胞中切断单个 SF,同时使用分子光学传感器跟踪粘着斑中 vinculin 的张力,来解决这个关键的未解决问题。我们表明,破坏单个 SF 会降低整个细胞中粘着斑中 vinculin 的张力,与靶向 SF 平行排列的粘着斑中 vinculin 张力降低更为明显。然而,值得注意的是,某些粘着斑亚群在 SF 照射后表现出增强的 vinculin 张力,并在张力增强和张力降低状态之间发生戏剧性的、意想不到的转变。这些变化强烈依赖于切断的 SF 的位置,这与我们之前的发现一致,即不同的 SF 池由不同的肌球蛋白激活剂调节。我们批判性地讨论了这些测量结果在多大程度上可以根据整个 FA 张力和牵引力来解释,并提出了一个将 SF 张力与粘附有载和细胞形状稳定性联系起来的模型。这些研究代表了迄今为止对特定 FA 蛋白上 SF 对张力的贡献进行的最直接和高分辨率的细胞内测量,并为研究细胞骨架力对粘着复合物的调节提供了新的范例。

相似文献

8
Geometry and network connectivity govern the mechanics of stress fibers.几何形状和网络连通性决定应力纤维的力学特性。
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2622-2627. doi: 10.1073/pnas.1606649114. Epub 2017 Feb 17.
10
Cell shape and tension alter focal adhesion structure.细胞形状和张力会改变粘着斑结构。
Biomater Adv. 2023 Feb;145:213277. doi: 10.1016/j.bioadv.2022.213277. Epub 2023 Jan 3.

引用本文的文献

本文引用的文献

9
Viscoelastic response of contractile filament bundles.收缩性细丝束的粘弹性响应
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051902. doi: 10.1103/PhysRevE.83.051902. Epub 2011 May 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验