Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA.
J Cell Sci. 2013 Jul 15;126(Pt 14):3021-30. doi: 10.1242/jcs.119032. Epub 2013 May 17.
Actomyosin stress fibers (SFs) enable cells to exert traction on planar extracellular matrices (ECMs) by tensing focal adhesions (FAs) at the cell-ECM interface. Although it is widely appreciated that the spatial and temporal distribution of these tensile forces play key roles in polarity, motility, fate choice, and other defining cell behaviors, virtually nothing is known about how an individual SF quantitatively contributes to tensile loads borne by specific molecules within associated FAs. We address this key open question by using femtosecond laser ablation to sever single SFs in cells while tracking tension across vinculin using a molecular optical sensor. We show that disruption of a single SF reduces tension across vinculin in FAs located throughout the cell, with enriched vinculin tension reduction in FAs oriented parallel to the targeted SF. Remarkably, however, some subpopulations of FAs exhibit enhanced vinculin tension upon SF irradiation and undergo dramatic, unexpected transitions between tension-enhanced and tension-reduced states. These changes depend strongly on the location of the severed SF, consistent with our earlier finding that different SF pools are regulated by distinct myosin activators. We critically discuss the extent to which these measurements can be interpreted in terms of whole-FA tension and traction and propose a model that relates SF tension to adhesive loads and cell shape stability. These studies represent the most direct and high-resolution intracellular measurements of SF contributions to tension on specific FA proteins to date and offer a new paradigm for investigating regulation of adhesive complexes by cytoskeletal force.
肌动球蛋白应力纤维 (SFs) 通过在细胞-ECM 界面处拉紧粘着斑 (FAs),使细胞能够对平面细胞外基质 (ECMs) 施加牵引力。尽管人们广泛认为这些张力的空间和时间分布在极性、运动性、命运选择和其他定义细胞行为方面起着关键作用,但实际上,人们几乎不知道单个 SF 如何定量地为相关 FA 中特定分子承受的拉伸载荷做出贡献。我们通过使用飞秒激光烧蚀在细胞中切断单个 SF,同时使用分子光学传感器跟踪粘着斑中 vinculin 的张力,来解决这个关键的未解决问题。我们表明,破坏单个 SF 会降低整个细胞中粘着斑中 vinculin 的张力,与靶向 SF 平行排列的粘着斑中 vinculin 张力降低更为明显。然而,值得注意的是,某些粘着斑亚群在 SF 照射后表现出增强的 vinculin 张力,并在张力增强和张力降低状态之间发生戏剧性的、意想不到的转变。这些变化强烈依赖于切断的 SF 的位置,这与我们之前的发现一致,即不同的 SF 池由不同的肌球蛋白激活剂调节。我们批判性地讨论了这些测量结果在多大程度上可以根据整个 FA 张力和牵引力来解释,并提出了一个将 SF 张力与粘附有载和细胞形状稳定性联系起来的模型。这些研究代表了迄今为止对特定 FA 蛋白上 SF 对张力的贡献进行的最直接和高分辨率的细胞内测量,并为研究细胞骨架力对粘着复合物的调节提供了新的范例。