Oxford Centre for Computational Neuroscience, Oxford, UK.
Department of Computer Science, University of Warwick, Coventry, UK.
Hippocampus. 2021 Jun;31(6):593-611. doi: 10.1002/hipo.23324. Epub 2021 Mar 24.
A new theory is proposed of mechanisms of navigation in primates including humans in which spatial view cells found in the primate hippocampus and parahippocampal gyrus are used to guide the individual from landmark to landmark. The navigation involves approach to each landmark in turn (taxis), using spatial view cells to identify the next landmark in the sequence, and does not require a topological map. Two other cell types found in primates, whole body motion cells, and head direction cells, can be utilized in the spatial view cell navigational mechanism, but are not essential. If the landmarks become obscured, then the spatial view representations can be updated by self-motion (idiothetic) path integration using spatial coordinate transform mechanisms in the primate dorsal visual system to transform from egocentric to allocentric spatial view coordinates. A continuous attractor network or time cells or working memory is used in this approach to navigation to encode and recall the spatial view sequences involved. I also propose how navigation can be performed using a further type of neuron found in primates, allocentric-bearing-to-a-landmark neurons, in which changes of direction are made when a landmark reaches a particular allocentric bearing. This is useful if a landmark cannot be approached. The theories are made explicit in models of navigation, which are then illustrated by computer simulations. These types of navigation are contrasted with triangulation, which requires a topological map. It is proposed that the first strategy utilizing spatial view cells is used frequently in humans, and is relatively simple because primates have spatial view neurons that respond allocentrically to locations in spatial scenes. An advantage of this approach to navigation is that hippocampal spatial view neurons are also useful for episodic memory, and for imagery.
提出了一种关于灵长类动物(包括人类)导航机制的新理论,该理论认为灵长类动物的海马体和旁海马回中的空间视图细胞被用于引导个体从一个地标到另一个地标。导航涉及依次接近每个地标(趋性),使用空间视图细胞识别序列中的下一个地标,并且不需要拓扑图。在灵长类动物中还发现了另外两种细胞类型,即全身运动细胞和头部方向细胞,可以在空间视图细胞导航机制中使用,但不是必需的。如果地标变得模糊,则可以通过使用灵长类动物背侧视觉系统中的空间坐标变换机制进行自我运动(自运动)路径积分来更新空间视图表示,以将坐标系从以自我为中心转换为以目标为中心的空间视图坐标。在这种导航方法中,连续吸引器网络或时间细胞或工作记忆用于编码和回忆所涉及的空间视图序列。我还提出了如何使用灵长类动物中发现的另一种神经元,即与地标相关的无向神经元,来进行导航,当地标达到特定的无向方位时,神经元会改变方向。如果无法接近地标,这将非常有用。这些理论在导航模型中得到了明确阐述,然后通过计算机模拟进行了说明。这些类型的导航与三角测量进行了对比,三角测量需要拓扑图。该理论提出,利用空间视图细胞的第一种策略在人类中经常使用,并且相对简单,因为灵长类动物具有空间视图神经元,这些神经元对空间场景中的位置以无向方式做出反应。这种导航方法的一个优点是,海马体的空间视图神经元对于情景记忆和想象也很有用。