Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.
Penn Center for Cancer Care Innovation, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA.
JCO Oncol Pract. 2021 Oct;17(10):e1473-e1488. doi: 10.1200/OP.20.00849. Epub 2021 Mar 24.
Despite evidence-based guidelines recommending early palliative care, it remains unclear how to identify and refer oncology patients, particularly in settings with constrained access to palliative care. We hypothesize that patient-reported outcome (PRO) data can be used to characterize patients with palliative care needs. To determine if PRO data can identify latent phenotypes that characterize indications for specialty palliative care referral.
We conducted a retrospective study of self-reported symptoms on the Edmonton Symptom Assessment System collected from solid tumor oncology patients (n = 745) referred to outpatient palliative care. Data were collected as part of routine clinical care from October 2012 to March 2018 at eight community and academic sites. We applied latent profile analysis to identify PRO phenotypes and examined the association of phenotypes with clinical and demographic characteristics using multinomial logistic regression.
We identified four PRO phenotypes: (1) Low Symptoms (n = 295, 39.6%), (2) Moderate Pain/Fatigue + Mood (n = 180, 24.2%), (3) Moderate Pain/Fatigue + Appetite + Dyspnea (n = 201, 27.0%), and (4) High Symptoms (n = 69, 9.3%). In a secondary analysis of 421 patients, we found that two brief items assessing social and existential needs aligned with higher severity symptom and psychological distress phenotypes.
Oncology patients referred to outpatient palliative care in a real-world setting can be differentiated into clinically meaningful phenotypes using brief, routinely collected PRO measures. Latent modeling provides a mechanism to use patient-reported data on a population level to identify distinct subgroups of patients with unmet palliative needs.
尽管有循证指南推荐早期姑息治疗,但如何识别和转介肿瘤科患者仍不清楚,尤其是在姑息治疗资源有限的情况下。我们假设患者报告的结果(PRO)数据可用于描述有姑息治疗需求的患者。本研究旨在确定 PRO 数据是否可用于识别潜在表型,这些表型可用于描述接受专科姑息治疗转介的指征。
我们对 745 例接受门诊姑息治疗的实体瘤肿瘤患者(n = 745)进行了回顾性研究,这些患者自我报告了埃德蒙顿症状评估系统(ESAS)的症状。数据是 2012 年 10 月至 2018 年 3 月在 8 个社区和学术地点进行常规临床护理时收集的。我们应用潜在剖面分析(LPA)来识别 PRO 表型,并使用多项逻辑回归检验表型与临床和人口统计学特征的关联。
我们确定了 4 种 PRO 表型:(1)低症状(n = 295,39.6%)、(2)中度疼痛/疲劳+情绪(n = 180,24.2%)、(3)中度疼痛/疲劳+食欲+呼吸困难(n = 201,27.0%)和(4)高症状(n = 69,9.3%)。在对 421 例患者的二次分析中,我们发现两项评估社会和存在需求的简短项目与更严重的症状和心理困扰表型相关。
在真实环境中,接受门诊姑息治疗的肿瘤患者可以使用简短、常规收集的 PRO 测量方法进行有临床意义的表型区分。潜在模型为利用患者报告的数据在人群水平上识别未满足姑息治疗需求的不同亚组提供了一种机制。