IEEE J Biomed Health Inform. 2021 Sep;25(9):3408-3415. doi: 10.1109/JBHI.2021.3068481. Epub 2021 Sep 3.
Electroencephalography (EEG) is commonly used to measure the depth of anesthesia (DOA) because EEG reflects surgical pain and state of the brain. However, precise and real-time estimation of DOA index for painful surgical operations is challenging due to problems such as postoperative complications and accidental awareness. To tackle these problems, we propose a new combinatorial deep learning structure involving convolutional neural networks (inspired by the inception module), bidirectional long short-term memory, and an attention layer. The proposed model uses the EEG signal to continuously predicts the bispectral index (BIS). It is trained over a large dataset, mostly from those under general anesthesia with few cases receiving sedation/analgesia and spinal anesthesia. Despite the imbalance distribution of BIS values in different levels of anesthesia, our proposed structure achieves convincing root mean square error of 5.59 ± 1.04 and mean absolute error of 4.3 ± 0.87, as well as improvement in area under the curve of 15% on average, which surpasses state-of-the-art DOA estimation methods. The DOA values are also discretized into four levels of anesthesia and the results demonstrate strong inter-subject classification accuracy of 88.7% that outperforms the conventional methods.
脑电图(EEG)常用于测量麻醉深度(DOA),因为 EEG 反映了手术疼痛和大脑状态。然而,由于术后并发症和意外意识等问题,对于疼痛性手术操作的 DOA 指数的精确和实时估计具有挑战性。为了解决这些问题,我们提出了一种新的组合深度学习结构,涉及卷积神经网络(受 inception 模块启发)、双向长短时记忆和注意力层。所提出的模型使用 EEG 信号连续预测双谱指数(BIS)。它是在一个大型数据集上进行训练的,这些数据主要来自接受全身麻醉的患者,少数情况下接受镇静/镇痛和脊髓麻醉的患者。尽管不同麻醉水平的 BIS 值分布不平衡,但我们提出的结构实现了令人信服的均方根误差为 5.59±1.04,平均绝对误差为 4.3±0.87,以及平均提高了 15%的曲线下面积,超过了最先进的 DOA 估计方法。DOA 值也被离散化为四个麻醉水平,结果表明具有 88.7%的强个体间分类准确性,优于传统方法。