Suppr超能文献

基于深度残差收缩网络的脑电信号麻醉深度估算。

Estimating the Depth of Anesthesia from EEG Signals Based on a Deep Residual Shrinkage Network.

机构信息

School of Electronics, Peking University, Beijing 100084, China.

Department of Anesthesiology, Peking University People's Hospital, Beijing 100044, China.

出版信息

Sensors (Basel). 2023 Jan 15;23(2):1008. doi: 10.3390/s23021008.

Abstract

The reliable monitoring of the depth of anesthesia (DoA) is essential to control the anesthesia procedure. Electroencephalography (EEG) has been widely used to estimate DoA since EEG could reflect the effect of anesthetic drugs on the central nervous system (CNS). In this study, we propose that a deep learning model consisting mainly of a deep residual shrinkage network (DRSN) and a 1 × 1 convolution network could estimate DoA in terms of patient state index (PSI) values. First, we preprocessed the four raw channels of EEG signals to remove electrical noise and other physiological signals. The proposed model then takes the preprocessed EEG signals as inputs to predict PSI values. Then we extracted 14 features from the preprocessed EEG signals and implemented three conventional feature-based models as comparisons. A dataset of 18 patients was used to evaluate the models' performances. The results of the five-fold cross-validation show that there is a relatively high similarity between the ground-truth PSI values and the predicted PSI values of our proposed model, which outperforms the conventional models, and further, that the Spearman's rank correlation coefficient is 0.9344. In addition, an ablation experiment was conducted to demonstrate the effectiveness of the soft-thresholding module for EEG-signal processing, and a cross-subject validation was implemented to illustrate the robustness of the proposed method. In summary, the procedure is not merely feasible for estimating DoA by mimicking PSI values but also inspired us to develop a precise DoA-estimation system with more convincing assessments of anesthetization levels.

摘要

可靠的麻醉深度监测(DoA)对于控制麻醉过程至关重要。脑电图(EEG)已广泛用于估计 DoA,因为 EEG 可以反映麻醉药物对中枢神经系统(CNS)的影响。在这项研究中,我们提出了一种主要由深度残差收缩网络(DRSN)和 1×1 卷积网络组成的深度学习模型,可以根据患者状态指数(PSI)值估计 DoA。首先,我们对 EEG 信号的四个原始通道进行预处理,以去除电噪声和其他生理信号。然后,所提出的模型将预处理后的 EEG 信号作为输入来预测 PSI 值。然后,我们从预处理后的 EEG 信号中提取了 14 个特征,并实施了三个传统的基于特征的模型作为比较。使用 18 名患者的数据集评估了模型的性能。五重交叉验证的结果表明,我们提出的模型的预测 PSI 值与真实 PSI 值之间具有较高的相似性,优于传统模型,并且 Spearman 秩相关系数为 0.9344。此外,进行了一项消融实验来证明 EEG 信号处理的软阈值模块的有效性,并且进行了跨受试者验证以说明所提出的方法的稳健性。总之,该过程不仅可以通过模拟 PSI 值来估计 DoA,而且还激发了我们开发更精确的 DoA 估计系统,并对麻醉水平进行更有说服力的评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4477/9865536/f555aefdb2fd/sensors-23-01008-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验