Suppr超能文献

从使用智能手机捕获的指尖视频生成的光体积描记图 (PPG) 信号中自动分析心脏脉搏周期,以测量血液血红蛋白水平。

Automated Cardiac Pulse Cycle Analysis From Photoplethysmogram (PPG) Signals Generated From Fingertip Videos Captured Using a Smartphone to Measure Blood Hemoglobin Levels.

出版信息

IEEE J Biomed Health Inform. 2021 May;25(5):1385-1396. doi: 10.1109/JBHI.2021.3068658. Epub 2021 May 11.

Abstract

Two billion people are affected by hemoglobin (Hgb) related diseases. Usual clinical assessments of Hgb are conducted by analyzing venipuncture-obtained blood samples in laboratories. A non-invasive, cheap, point-of-care and accurate Hgb test is needed everywhere. Our group has developed a non-invasive Hgb measurement system using 10-second Smartphone videos of the index fingertips. Custom hardware sets were used to illuminate the fingers. We tested four lighting conditions with wavelengths in the near-infrared spectrum suggested by the absorption properties of two primary components of blood-oxygenated Hgb and plasma. We found a strong linear correlation between our measured and laboratory-measured Hgb levels in 167 patients with a mean absolute percentage error (MAPE) of 5%. In our initial analysis, critical tasks were performed manually. Now, using the same data, we have automated or modified all the steps. For all, male, and female subjects we found a MAPE of 6.43%, 5.34%, and 4.85 and mean squared error (MSE) of 0.84, 0.5, and 0.49 respectively. The new analyses however, have suggested inexplicable inconsistencies in our results, which we attribute to laboratory measurement errors reflected in a non-normative distribution of Hgb levels in our studied patients, as well as excess noise in the specific signals we measured in the videos. Based on these encouraging results, and the promise of greater accuracy with our revised hardware and software tools, we now propose a rigorous validation study to demonstrate that this approach to hemoglobin measurement is appropriate for general clinical application.

摘要

全球有 20 亿人受到血红蛋白(Hb)相关疾病的影响。通常在实验室通过分析静脉采血获得的血液样本进行 Hb 的临床评估。需要在任何地方都能够进行非侵入性、廉价、即时、准确的 Hb 测试。我们的团队开发了一种使用智能手机拍摄 10 秒钟指尖的非侵入性 Hb 测量系统。定制的硬件套件用于照亮手指。我们测试了四种近红外光谱的照明条件,这些条件是根据血液中两种主要成分(氧合血红蛋白和血浆)的吸收特性建议的。我们在 167 名患者中发现了我们测量的 Hb 水平与实验室测量的 Hb 水平之间的强线性相关性,平均绝对百分比误差(MAPE)为 5%。在我们的初步分析中,关键任务是手动完成的。现在,我们使用相同的数据自动化或修改了所有步骤。对于所有男性和女性受试者,我们发现 MAPE 分别为 6.43%、5.34%和 4.85,平均平方误差(MSE)分别为 0.84、0.5 和 0.49。然而,新的分析表明,我们的结果存在无法解释的不一致,我们将其归因于实验室测量误差,这反映在我们研究的患者的 Hb 水平分布不规则,以及我们在视频中测量的特定信号存在过多噪声。基于这些令人鼓舞的结果,以及我们改进的硬件和软件工具可以提高准确性的承诺,我们现在提出了一项严格的验证研究,以证明这种 Hb 测量方法适合一般临床应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验