Suppr超能文献

基于图的大型动态交通网络漏洞提前监测

Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks.

作者信息

Furno Angelo, Faouzi Nour-Eddin El, Sharma Rajesh, Zimeo Eugenio

机构信息

LICIT UMR_T9401, University of Lyon, ENTPE, University Gustave Eiffel, Lyon, France.

Institute of Computer Science, University of Tartu, Tartu, Estonia.

出版信息

PLoS One. 2021 Mar 24;16(3):e0248764. doi: 10.1371/journal.pone.0248764. eCollection 2021.

Abstract

Betweenness Centrality (BC) has proven to be a fundamental metric in many domains to identify the components (nodes) of a system modelled as a graph that are mostly traversed by information flows thus being critical to the proper functioning of the system itself. In the transportation domain, the metric has been mainly adopted to discover topological bottlenecks of the physical infrastructure composed of roads or railways. The adoption of this metric to study the evolution of transportation networks that take into account also the dynamic conditions of traffic is in its infancy mainly due to the high computation time needed to compute BC in large dynamic graphs. This paper explores the adoption of dynamic BC, i.e., BC computed on dynamic large-scale graphs, modeling road networks and the related vehicular traffic, and proposes the adoption of a fast algorithm for ahead monitoring of transportation networks by computing approximated BC values under time constraints. The experimental analysis proves that, with a bounded and tolerable approximation, the algorithm computes BC on very large dynamically weighted graphs in a significantly shorter time if compared with exact computation. Moreover, since the proposed algorithm can be tuned for an ideal trade-off between performance and accuracy, our solution paves the way to quasi real-time monitoring of highly dynamic networks providing anticipated information about possible congested or vulnerable areas. Such knowledge can be exploited by travel assistance services or intelligent traffic control systems to perform informed re-routing and therefore enhance network resilience in smart cities.

摘要

介数中心性(BC)已被证明是许多领域中的一个基本度量,用于识别作为图建模的系统的组件(节点),这些组件大多被信息流遍历,因此对系统本身的正常运行至关重要。在交通领域,该度量主要用于发现由道路或铁路组成的物理基础设施的拓扑瓶颈。将此度量用于研究同时考虑交通动态状况的交通网络的演变尚处于起步阶段,主要原因是在大型动态图中计算BC所需的计算时间较长。本文探讨了动态BC的应用,即在动态大规模图上计算的BC,对道路网络和相关车辆交通进行建模,并提出通过在时间约束下计算近似BC值来采用一种快速算法对交通网络进行提前监测。实验分析证明,在有界且可容忍的近似情况下,与精确计算相比,该算法能在显著更短的时间内计算出非常大的动态加权图上的BC。此外,由于所提出的算法可以针对性能和准确性之间的理想权衡进行调整,我们的解决方案为高度动态网络的准实时监测铺平了道路,提供有关可能拥堵或脆弱区域的预期信息。旅行辅助服务或智能交通控制系统可以利用这些知识进行明智的重新路由,从而提高智慧城市中的网络弹性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d8d/7990197/bc31fa480ab0/pone.0248764.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验