Suppr超能文献

用光激发鞭毛的重新激活和微管网络的收缩:构建人工细胞的方法。

Light-Powered Reactivation of Flagella and Contraction of Microtubule Networks: Toward Building an Artificial Cell.

机构信息

Max-Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany.

Max-Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.

出版信息

ACS Synth Biol. 2021 Jun 18;10(6):1490-1504. doi: 10.1021/acssynbio.1c00071. Epub 2021 Mar 24.

Abstract

Artificial systems capable of self-sustained movement with self-sufficient energy are of high interest with respect to the development of many challenging applications, including medical treatments, but also technical applications. The bottom-up assembly of such systems in the context of synthetic biology is still a challenging task. In this work, we demonstrate the biocompatibility and efficiency of an artificial light-driven energy module and a motility functional unit by integrating light-switchable photosynthetic vesicles with demembranated flagella. The flagellar propulsion is coupled to the beating frequency, and dynamic ATP synthesis in response to illumination allows us to control beating frequency of flagella in a light-dependent manner. In addition, we verified the functionality of light-powered synthetic vesicles in motility assays by encapsulating microtubules assembled with force-generating kinesin-1 motors and the energy module to investigate the dynamics of a contractile filamentous network in cell-like compartments by optical stimulation. Integration of this photosynthetic system with various biological building blocks such as cytoskeletal filaments and molecular motors may contribute to the bottom-up synthesis of artificial cells that are able to undergo motor-driven morphological deformations and exhibit directional motion in a light-controllable fashion.

摘要

具有自持续能量的自主运动的人工系统对于许多挑战性应用的发展具有很高的兴趣,包括医疗治疗,还有技术应用。在合成生物学的背景下,自下而上地组装这样的系统仍然是一个具有挑战性的任务。在这项工作中,我们通过将光控光合囊泡与去膜鞭毛集成,展示了人工光驱动能量模块和运动功能单元的生物相容性和效率。鞭毛的推进与拍打频率耦合,并且对光照的动态 ATP 合成使我们能够以光依赖的方式控制鞭毛的拍打频率。此外,我们通过封装组装有产生力的驱动蛋白-1 马达的微管和能量模块,在运动测定中验证了光动力合成囊泡的功能,以研究细胞样隔室中收缩丝状网络的动力学通过光学刺激。将这种光合系统与细胞骨架丝和分子马达等各种生物构建块集成,可能有助于人工细胞的自下而上合成,这些细胞能够进行马达驱动的形态变形,并以光可控的方式表现出定向运动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验