Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077, Göttingen, Germany.
Jožef Stefan Institute, Ljubljana, 1000, Slovenia.
Small. 2022 Aug;18(32):e2107854. doi: 10.1002/smll.202107854. Epub 2022 Jul 11.
Cilia and flagella are beating rod-like organelles that enable the directional movement of microorganisms in fluids and fluid transport along the surface of biological organisms or inside organs. The molecular motor axonemal dynein drives their beating by interacting with microtubules. Constructing synthetic beating systems with axonemal dynein capable of mimicking ciliary beating still represents a major challenge. Here, the bottom-up engineering of a sustained beating synthoneme consisting of a pair of microtubules connected by a series of periodic arrays of approximately eight axonemal dyneins is reported. A model leads to the understanding of the motion through the cooperative, cyclic association-dissociation of the molecular motor from the microtubules. The synthoneme represents a bottom-up self-organized bio-molecular machine at the nanoscale with cilia-like properties.
纤毛和鞭毛是棒状的细胞器,使微生物在流体中定向运动,并沿生物有机体的表面或内部器官进行流体运输。分子马达轴丝动力蛋白通过与微管相互作用驱动它们的运动。用能够模拟纤毛运动的轴丝动力蛋白构建合成的拍打系统仍然是一个主要的挑战。在这里,报道了一种由一对微管组成的持续拍打合成物的自下而上的工程,该合成物由一系列周期性的大约八个轴丝动力蛋白组成。该模型通过分子马达从微管的协同、循环缔合-解离来理解运动。该合成物代表了一种自下而上的纳米尺度的自我组织的生物分子机器,具有纤毛样的特性。