Suppr超能文献

基于推特的分析揭示了社会经济差距地区对新冠病毒的不同担忧。

Twitter-based analysis reveals differential COVID-19 concerns across areas with socioeconomic disparities.

作者信息

Su Yihua, Venkat Aarthi, Yadav Yadush, Puglisi Lisa B, Fodeh Samah J

机构信息

Health Informatics Program, Yale School of Public Health, 60 College St, New Haven, CT, 06510, USA.

Computational Biology and Bioinformatics Program, Yale University, 300 George Street, Suite 501, New Haven, CT, 06511, USA.

出版信息

Comput Biol Med. 2021 May;132:104336. doi: 10.1016/j.compbiomed.2021.104336. Epub 2021 Mar 13.

Abstract

OBJECTIVE

We sought to understand spatial-temporal factors and socioeconomic disparities that shaped U.S. residents' response to COVID-19 as it emerged.

METHODS

We mined coronavirus-related tweets from January 23rd to March 25th, 2020. We classified tweets by the socioeconomic status of the county from which they originated with the Area Deprivation Index (ADI). We applied topic modeling to identify and monitor topics of concern over time. We investigated how topics varied by ADI and between hotspots and non-hotspots.

RESULTS

We identified 45 topics in 269,556 unique tweets. Topics shifted from early-outbreak-related content in January, to the presidential election and governmental response in February, to lifestyle impacts in March. High-resourced areas (low ADI) were concerned with stocks and social distancing, while under-resourced areas shared negative expression and discussion of the CARES Act relief package. These differences were consistent within hotspots, with increased discussion regarding employment in high ADI hotspots.

DISCUSSION

Topic modeling captures major concerns on Twitter in the early months of COVID-19. Our study extends previous Twitter-based research as it assesses how topics differ based on a marker of socioeconomic status. Comparisons between low and high-resourced areas indicate more focus on personal economic hardship in less-resourced communities and less focus on general public health messaging.

CONCLUSION

Real-time social media analysis of community-based pandemic responses can uncover differential conversations correlating to local impact and income, education, and housing disparities. In future public health crises, such insights can inform messaging campaigns, which should partly focus on the interests of those most disproportionately impacted.

摘要

目的

我们试图了解在新冠疫情初现之时,塑造美国居民对其反应的时空因素和社会经济差异。

方法

我们挖掘了2020年1月23日至3月25日期间与冠状病毒相关的推文。我们根据推文来源县的社会经济状况,利用地区贫困指数(ADI)对推文进行分类。我们应用主题建模来识别和监测不同时间点人们关注的主题。我们研究了这些主题在不同ADI地区以及热点地区和非热点地区之间是如何变化的。

结果

我们在269,556条独特推文中识别出45个主题。主题从1月份与疫情初期相关的内容,转变为2月份的总统选举和政府应对措施,再到3月份的生活方式影响。资源丰富地区(低ADI)关注股票和社交距离,而资源匮乏地区则分享了对《新冠病毒援助、救济和经济安全法案》(CARES Act)救助计划的负面表达和讨论。这些差异在热点地区内部是一致的,高ADI热点地区对就业的讨论有所增加。

讨论

主题建模捕捉了新冠疫情最初几个月推特上的主要关注点。我们的研究扩展了以往基于推特的研究,因为它评估了主题如何根据社会经济地位指标而有所不同。资源匮乏地区和丰富地区之间的比较表明,资源较少的社区更关注个人经济困难,而对一般公共卫生信息的关注较少。

结论

对基于社区的疫情应对进行实时社交媒体分析,可以揭示与当地影响以及收入、教育和住房差异相关的不同对话。在未来的公共卫生危机中,这些见解可为宣传活动提供参考,宣传活动应部分关注受影响最严重人群的利益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06e4/9159205/a31dec181b21/ga1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验