Suppr超能文献

利用多模态成像数据通过迁移学习进行新冠病毒疾病检测

COVID-19 Detection Through Transfer Learning Using Multimodal Imaging Data.

作者信息

Horry Michael J, Chakraborty Subrata, Paul Manoranjan, Ulhaq Anwaar, Pradhan Biswajeet, Saha Manas, Shukla Nagesh

机构信息

Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Information, Systems, and Modeling, Faculty of Engineering and ITUniversity of Technology Sydney Sydney NSW 2007 Australia.

IBM Australia Limited Sydney NSW 2065 Australia.

出版信息

IEEE Access. 2020 Aug 14;8:149808-149824. doi: 10.1109/ACCESS.2020.3016780. eCollection 2020.

Abstract

Detecting COVID-19 early may help in devising an appropriate treatment plan and disease containment decisions. In this study, we demonstrate how transfer learning from deep learning models can be used to perform COVID-19 detection using images from three most commonly used medical imaging modes X-Ray, Ultrasound, and CT scan. The aim is to provide over-stressed medical professionals a second pair of eyes through intelligent deep learning image classification models. We identify a suitable (CNN) model through initial comparative study of several popular CNN models. We then optimize the selected VGG19 model for the image modalities to show how the models can be used for the highly scarce and challenging COVID-19 datasets. We highlight the challenges (including dataset size and quality) in utilizing current publicly available COVID-19 datasets for developing useful deep learning models and how it adversely impacts the trainability of complex models. We also propose an image pre-processing stage to create a trustworthy image dataset for developing and testing the deep learning models. The new approach is aimed to reduce unwanted noise from the images so that deep learning models can focus on detecting diseases with specific features from them. Our results indicate that Ultrasound images provide superior detection accuracy compared to X-Ray and CT scans. The experimental results highlight that with limited data, most of the deeper networks struggle to train well and provides less consistency over the three imaging modes we are using. The selected VGG19 model, which is then extensively tuned with appropriate parameters, performs in considerable levels of COVID-19 detection against pneumonia or normal for all three lung image modes with the precision of up to 86% for X-Ray, 100% for Ultrasound and 84% for CT scans.

摘要

早期检测新冠病毒有助于制定合适的治疗方案和疾病防控决策。在本研究中,我们展示了如何利用深度学习模型的迁移学习,通过三种最常用的医学成像模式(X光、超声和CT扫描)的图像来进行新冠病毒检测。目的是通过智能深度学习图像分类模型为不堪重负的医学专业人员提供“第二双眼睛”。我们通过对几种流行的卷积神经网络(CNN)模型进行初步比较研究,确定了一个合适的模型。然后,我们针对图像模态对选定的VGG19模型进行优化,以展示这些模型如何用于高度稀缺且具有挑战性的新冠病毒数据集。我们强调了利用当前公开可用的新冠病毒数据集开发有用的深度学习模型时所面临的挑战(包括数据集的大小和质量),以及这如何对复杂模型的可训练性产生不利影响。我们还提出了一个图像预处理阶段,以创建一个可靠的图像数据集来开发和测试深度学习模型。新方法旨在减少图像中的不必要噪声,以便深度学习模型能够专注于从图像中检测具有特定特征的疾病。我们的结果表明,与X光和CT扫描相比,超声图像具有更高的检测准确率。实验结果突出表明,在数据有限的情况下,大多数更深层次的网络难以良好训练,并且在我们使用的三种成像模式下一致性较差。选定的VGG19模型经过适当参数的广泛调整后,在针对所有三种肺部图像模式检测新冠病毒与肺炎或正常情况时表现出色,X光检测精度高达86%,超声检测精度达100%,CT扫描检测精度达84%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83d8/8668160/e0820e796ccd/chakr1-3016780.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验