Suppr超能文献

南非城市民众对 COVID-19 疫苗的看法:对 Twitter 帖子的分析。

Public sentiments toward COVID-19 vaccines in South African cities: An analysis of Twitter posts.

机构信息

Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC), York University, Toronto, ON, Canada.

Laboratory for Industrial and Applied Mathematics, York University, Toronto, ON, Canada.

出版信息

Front Public Health. 2022 Aug 12;10:987376. doi: 10.3389/fpubh.2022.987376. eCollection 2022.

Abstract

Amidst the COVID-19 vaccination, Twitter is one of the most popular platforms for discussions about the COVID-19 vaccination. These types of discussions most times lead to a compromise of public confidence toward the vaccine. The text-based data generated by these discussions are used by researchers to extract topics and perform sentiment analysis at the provincial, country, or continent level without considering the local communities. The aim of this study is to use clustered geo-tagged Twitter posts to inform city-level variations in sentiments toward COVID-19 vaccine-related topics in the three largest South African cities (Cape Town, Durban, and Johannesburg). VADER, an NLP pre-trained model was used to label the Twitter posts according to their sentiments with their associated intensity scores. The outputs were validated using NB (0.68), LR (0.75), SVMs (0.70), DT (0.62), and KNN (0.56) machine learning classification algorithms. The number of new COVID-19 cases significantly positively correlated with the number of Tweets in South Africa (Corr = 0.462, < 0.001). Out of the 10 topics identified from the tweets using the LDA model, two were about the COVID-19 vaccines: uptake and supply, respectively. The intensity of the sentiment score for the two topics was associated with the total number of vaccines administered in South Africa ( < 0.001). Discussions regarding the two topics showed higher intensity scores for the neutral sentiment class ( = 0.015) than for other sentiment classes. Additionally, the intensity of the discussions on the two topics was associated with the total number of vaccines administered, new cases, deaths, and recoveries across the three cities ( < 0.001). The sentiment score for the most discussed topic, vaccine uptake, differed across the three cities, with ( = 0.003), ( = 0.002), and ( < 0.001) for positive, negative, and neutral sentiments classes, respectively. The outcome of this research showed that clustered geo-tagged Twitter posts can be used to better analyse the dynamics in sentiments toward community-based infectious diseases-related discussions, such as COVID-19, Malaria, or Monkeypox. This can provide additional city-level information to health policy in planning and decision-making regarding vaccine hesitancy for future outbreaks.

摘要

在 COVID-19 疫苗接种期间,Twitter 是讨论 COVID-19 疫苗接种的最受欢迎平台之一。这些类型的讨论往往会导致公众对疫苗的信心受到损害。研究人员使用这些讨论产生的基于文本的数据,在省级、国家级或大洲级水平上提取主题并进行情感分析,而没有考虑到当地社区。本研究旨在使用聚类地理标记的 Twitter 帖子来告知南非三个最大城市(开普敦、德班和约翰内斯堡)中与 COVID-19 疫苗相关主题的城市级情绪变化。使用 NLP 预训练模型 VADER 根据情绪及其相关强度得分对 Twitter 帖子进行标签。使用 NB(0.68)、LR(0.75)、SVMs(0.70)、DT(0.62)和 KNN(0.56)机器学习分类算法验证输出。南非新 COVID-19 病例的数量与 Twitter 上的推文数量呈显著正相关(Corr = 0.462, < 0.001)。使用 LDA 模型从推文中确定了 10 个主题,其中两个主题与 COVID-19 疫苗有关:接种率和供应。两个主题的情绪得分强度与南非接种的疫苗总数相关( < 0.001)。关于这两个主题的讨论显示,中性情绪类别( = 0.015)的强度得分高于其他情绪类别。此外,这两个主题的讨论强度与三个城市的疫苗接种总数、新病例、死亡和康复人数相关( < 0.001)。最受关注的话题——疫苗接种率的情绪得分在三个城市有所不同,分别为( = 0.003)、( = 0.002)和( < 0.001),分别为正、负和中性情绪类别。本研究的结果表明,聚类地理标记的 Twitter 帖子可用于更好地分析社区为基础的传染病相关讨论的情绪动态,如 COVID-19、疟疾或猴痘。这可以为未来疫情的疫苗犹豫提供额外的城市级信息,以帮助卫生政策规划和决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48b/9412204/3acbcb432643/fpubh-10-987376-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验