Suppr超能文献

贝叶斯方法在变量选择中的应用:从实用角度的比较研究。

Bayesian approaches to variable selection: a comparative study from practical perspectives.

机构信息

Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada.

Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.

出版信息

Int J Biostat. 2021 Mar 24;18(1):83-108. doi: 10.1515/ijb-2020-0130.

Abstract

In many clinical studies, researchers are interested in parsimonious models that simultaneously achieve consistent variable selection and optimal prediction. The resulting parsimonious models will facilitate meaningful biological interpretation and scientific findings. Variable selection via Bayesian inference has been receiving significant advancement in recent years. Despite its increasing popularity, there is limited practical guidance for implementing these Bayesian approaches and evaluating their comparative performance in clinical datasets. In this paper, we review several commonly used Bayesian approaches to variable selection, with emphasis on application and implementation through R software. These approaches can be roughly categorized into four classes: namely the Bayesian model selection, spike-and-slab priors, shrinkage priors, and the hybrid of both. To evaluate their variable selection performance under various scenarios, we compare these four classes of approaches using real and simulated datasets. These results provide practical guidance to researchers who are interested in applying Bayesian approaches for the purpose of variable selection.

摘要

在许多临床研究中,研究人员对简洁的模型感兴趣,这些模型能够同时实现一致的变量选择和最佳的预测。由此产生的简洁模型将有助于有意义的生物学解释和科学发现。通过贝叶斯推断进行变量选择近年来取得了显著进展。尽管它越来越受欢迎,但在临床数据集中实施这些贝叶斯方法并评估它们的比较性能方面,仍然缺乏实用的指导。本文综述了几种常用的贝叶斯变量选择方法,重点介绍了通过 R 软件进行应用和实施。这些方法大致可以分为四类:贝叶斯模型选择、尖峰-板条先验、收缩先验以及两者的混合。为了评估它们在各种情况下的变量选择性能,我们使用真实和模拟数据集比较了这四类方法。这些结果为有兴趣应用贝叶斯方法进行变量选择的研究人员提供了实用的指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验