Suppr超能文献

多特质贝叶斯收缩和变量选择模型,使用 BGLR-R 包。

Multitrait Bayesian shrinkage and variable selection models with the BGLR-R package.

机构信息

Colegio de Postgraduados, Montecillo, Estado de México 56230, Mexico.

Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA.

出版信息

Genetics. 2022 Aug 30;222(1). doi: 10.1093/genetics/iyac112.

Abstract

The BGLR-R package implements various types of single-trait shrinkage/variable selection Bayesian regressions. The package was first released in 2014, since then it has become a software very often used in genomic studies. We recently develop functionality for multitrait models. The implementation allows users to include an arbitrary number of random-effects terms. For each set of predictors, users can choose diffuse, Gaussian, and Gaussian-spike-slab multivariate priors. Unlike other software packages for multitrait genomic regressions, BGLR offers many specifications for (co)variance parameters (unstructured, diagonal, factor analytic, and recursive). Samples from the posterior distribution of the models implemented in the multitrait function are generated using a Gibbs sampler, which is implemented by combining code written in the R and C programming languages. In this article, we provide an overview of the models and methods implemented BGLR's multitrait function, present examples that illustrate the use of the package, and benchmark the performance of the software.

摘要

BGLR-R 包实现了各种单性状收缩/变量选择贝叶斯回归。该包于 2014 年首次发布,此后已成为基因组研究中常用的软件。我们最近为多性状模型开发了功能。该实现允许用户包含任意数量的随机效应项。对于每组预测因子,用户可以选择弥散、高斯和高斯尖峰-板条多元先验。与其他多性状基因组回归的软件包不同,BGLR 为(协)方差参数提供了许多规范(非结构化、对角、因子分析和递归)。多性状函数中实现的模型的后验分布样本使用 Gibbs 采样器生成,该采样器通过组合用 R 和 C 编程语言编写的代码来实现。在本文中,我们提供了 BGLR 的多性状函数所实现的模型和方法的概述,展示了使用该包的示例,并对软件的性能进行了基准测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d53/9434216/b9bd1b24cc7e/iyac112f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验