The Bernal Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland.
Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
Langmuir. 2021 Apr 6;37(13):4033-4041. doi: 10.1021/acs.langmuir.1c00409. Epub 2021 Mar 25.
Interactions of a protein with a solid-liquid or a liquid-liquid interface may destabilize its conformation and hence result in a loss of biological activity. We propose here a method for the immobilization of proteins at an electrified liquid-liquid interface. Cytochrome c (Cyt c) is encapsulated in a silica matrix through an electrochemical process at an electrified liquid-liquid interface. Silica condensation is triggered by the interfacial transfer of cationic surfactant, cetyltrimethylammonium, at the lower end of the interfacial potential window. Cyt c is then adsorbed on the previously electrodeposited silica layer, when the interfacial potential, Δϕ, is at the positive end of the potential window. By cycling of the potential window back and forth, silica electrodeposition and Cyt c adsorption occur sequentially as demonstrated by UV-vis absorbance spectroscopy. After collection from the liquid-liquid interface, the Cyt c-silica matrix is characterized by UV-vis diffuse reflectance spectroscopy, confocal Raman microscopy, and fluorescence microscopy, showing that the protein maintained its tertiary structure during the encapsulation process. The absence of denaturation is further confirmed by the absence of electrocatalytic activity toward O (observed in the case of Cyt c denaturation). This method of protein encapsulation may be used for other proteins (e.g., Fe-S cluster oxidoreductases, copper-containing reductases, pyrroloquinoline quinone-containing enzymes, or flavoproteins) in the development of biphasic bioelectrosynthesis or bioelectrocatalysis applications.
蛋白质与固-液或液-液界面的相互作用可能会使其构象失稳,从而导致生物活性丧失。在这里,我们提出了一种在带电液-液界面固定蛋白质的方法。通过在带电液-液界面电化学过程将细胞色素 c(Cyt c)封装在二氧化硅基质中。在界面势窗的低端,通过阳离子表面活性剂十六烷基三甲基铵的界面转移引发硅烷缩合。当界面势ϕ处于势窗的正端时,Cyt c 被吸附在先前电沉积的二氧化硅层上。通过来回循环势窗,如紫外-可见吸收光谱所示,依次进行二氧化硅电沉积和 Cyt c 吸附。从液-液界面收集后,通过紫外-可见漫反射光谱、共焦拉曼显微镜和荧光显微镜对 Cyt c-二氧化硅基质进行了表征,表明蛋白质在封装过程中保持了其三级结构。在 Cyt c 变性的情况下观察到不存在电催化活性(O 的电催化活性)进一步证实了没有变性。这种蛋白质封装方法可用于开发两相生物合成或生物电化学应用中的其他蛋白质(例如,Fe-S 簇氧化还原酶、含铜还原酶、吡咯喹啉醌酶或黄素蛋白)。