Suppr超能文献

DNA 折纸模板导向的溶胶-凝胶化学法二氧化硅生长。

DNA-Origami-Templated Silica Growth by Sol-Gel Chemistry.

机构信息

Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539, Munich, Germany.

Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Butenandtstrasse 5-13, 81377, Munich, Germany.

出版信息

Angew Chem Int Ed Engl. 2019 Jan 14;58(3):912-916. doi: 10.1002/anie.201811323. Epub 2018 Dec 11.

Abstract

Improving the stability of DNA origami structures with respect to thermal, chemical, and mechanical demands will be essential to fully explore the real-life applicability of DNA nanotechnology. Here we present a strategy to increase the mechanical resilience of individual DNA origami objects and 3D DNA origami crystals in solution as well as in the dry state. By encapsulating DNA origami in a protective silica shell using sol-gel chemistry, all the objects maintain their structural integrity. This allowed for a detailed structural analysis of the crystals in a dry state, thereby revealing their true 3D shape without lattice deformation and drying-induced collapse. Analysis by energy-dispersive X-ray spectroscopy showed a uniform silica coating whose thickness could be controlled through the precursor concentrations and reaction time. This strategy thus facilitates shape-controlled bottom-up synthesis of designable biomimetic silica structures through transcription from DNA origami.

摘要

提高 DNA 折纸结构在热、化学和机械方面的稳定性对于充分探索 DNA 纳米技术的实际应用至关重要。在这里,我们提出了一种策略,以提高单个 DNA 折纸物体和溶液中以及干燥状态下的 3D DNA 折纸晶体的机械弹性。通过使用溶胶-凝胶化学将 DNA 折纸封装在保护性二氧化硅壳中,所有物体都保持其结构完整性。这使得可以在干燥状态下对晶体进行详细的结构分析,从而揭示其真实的 3D 形状,而不会发生晶格变形和干燥引起的塌陷。能谱分析表明,形成了均匀的二氧化硅涂层,其厚度可以通过前体浓度和反应时间来控制。因此,该策略通过从 DNA 折纸转录,促进了具有设计性的仿生二氧化硅结构的形状可控的自下而上合成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验