Suppr超能文献

人体膝关节外骨骼辅助策略与交互的建模与仿真

Modeling and Simulation of a Human Knee Exoskeleton's Assistive Strategies and Interaction.

作者信息

Zhang Longbin, Liu Yixing, Wang Ruoli, Smith Christian, Gutierrez-Farewik Elena M

机构信息

KTH MoveAbility Lab, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden.

KTH BioMEx Center, KTH Royal Institute of Technology, Stockholm, Sweden.

出版信息

Front Neurorobot. 2021 Mar 8;15:620928. doi: 10.3389/fnbot.2021.620928. eCollection 2021.

Abstract

Exoskeletons are increasingly used in rehabilitation and daily life in patients with motor disorders after neurological injuries. In this paper, a realistic human knee exoskeleton model based on a physical system was generated, a human-machine system was created in a musculoskeletal modeling software, and human-machine interactions based on different assistive strategies were simulated. The developed human-machine system makes it possible to compute torques, muscle impulse, contact forces, and interactive forces involved in simulated movements. Assistive strategies modeled as a rotational actuator, a simple pendulum model, and a damped pendulum model were applied to the knee exoskeleton during simulated normal and fast gait. We found that the rotational actuator-based assistive controller could reduce the user's required physiological knee extensor torque and muscle impulse by a small amount, which suggests that joint rotational direction should be considered when developing an assistive strategy. Compared to the simple pendulum model, the damped pendulum model based controller made little difference during swing, but further decreased the user's required knee flexor torque during late stance. The trade-off that we identified between interaction forces and physiological torque, of which muscle impulse is the main contributor, should be considered when designing controllers for a physical exoskeleton system. Detailed information at joint and muscle levels provided in this human-machine system can contribute to the controller design optimization of assistive exoskeletons for rehabilitation and movement assistance.

摘要

外骨骼越来越多地应用于神经损伤后运动障碍患者的康复和日常生活中。本文生成了一个基于物理系统的逼真的人体膝关节外骨骼模型,在肌肉骨骼建模软件中创建了人机系统,并模拟了基于不同辅助策略的人机交互。所开发的人机系统能够计算模拟运动中涉及的扭矩、肌肉冲动、接触力和相互作用力。在模拟正常和快速步态期间,将建模为旋转执行器、简单摆模型和阻尼摆模型的辅助策略应用于膝关节外骨骼。我们发现,基于旋转执行器的辅助控制器可以少量降低用户所需的生理膝关节伸肌扭矩和肌肉冲动,这表明在制定辅助策略时应考虑关节旋转方向。与简单摆模型相比,基于阻尼摆模型的控制器在摆动期间影响不大,但在站立后期进一步降低了用户所需的膝关节屈肌扭矩。在设计物理外骨骼系统的控制器时,应考虑我们所确定的相互作用力与生理扭矩之间的权衡,其中肌肉冲动是主要因素。该人机系统提供的关节和肌肉水平的详细信息有助于辅助外骨骼康复和运动辅助控制器设计的优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac67/7982590/78b0407a3da5/fnbot-15-620928-g0001.jpg

相似文献

1
Modeling and Simulation of a Human Knee Exoskeleton's Assistive Strategies and Interaction.
Front Neurorobot. 2021 Mar 8;15:620928. doi: 10.3389/fnbot.2021.620928. eCollection 2021.
3
Neuromusculoskeletal model-informed machine learning-based control of a knee exoskeleton with uncertainties quantification.
Front Neurosci. 2023 Aug 30;17:1254088. doi: 10.3389/fnins.2023.1254088. eCollection 2023.
4
Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements.
J Neuroeng Rehabil. 2019 Jun 3;16(1):65. doi: 10.1186/s12984-019-0526-8.
6
Novel swing-assist un-motorized exoskeletons for gait training.
J Neuroeng Rehabil. 2009 Jul 3;6:24. doi: 10.1186/1743-0003-6-24.
9
Effects of stance control hidden Markov model-based gait phase detection on healthy users of an active hip-knee exoskeleton.
Front Bioeng Biotechnol. 2023 Apr 10;11:1021525. doi: 10.3389/fbioe.2023.1021525. eCollection 2023.
10
Tracking control of time-varying knee exoskeleton disturbed by interaction torque.
ISA Trans. 2017 Nov;71(Pt 2):458-466. doi: 10.1016/j.isatra.2017.08.004. Epub 2017 Aug 17.

引用本文的文献

1
Hip, knee, and ankle joint forces during exoskeletal-assisted walking: Comparison of approaches to simulate human-robot interactions.
PLoS One. 2025 Aug 29;20(8):e0322247. doi: 10.1371/journal.pone.0322247. eCollection 2025.
2
Biomechanical models in the lower-limb exoskeletons development: a review.
J Neuroeng Rehabil. 2025 Jan 24;22(1):12. doi: 10.1186/s12984-025-01556-5.
3
Modelling the interaction between wearable assistive devices and digital human models-A systematic review.
Front Bioeng Biotechnol. 2023 Jan 10;10:1044275. doi: 10.3389/fbioe.2022.1044275. eCollection 2022.
4
An Integrated Dynamic Closed Loop Simulation Platform for Elbow Flexion Augmentation Using an Upper Limb Exosuit Model.
Front Robot AI. 2022 Mar 17;9:768841. doi: 10.3389/frobt.2022.768841. eCollection 2022.

本文引用的文献

1
Immediate Effects of Medially Posted Insoles on Lower Limb Joint Contact Forces in Adult Acquired Flatfoot: A Pilot Study.
Int J Environ Res Public Health. 2020 Mar 26;17(7):2226. doi: 10.3390/ijerph17072226.
2
Subject-Exoskeleton Contact Model Calibration Leads to Accurate Interaction Force Predictions.
IEEE Trans Neural Syst Rehabil Eng. 2019 Aug;27(8):1597-1605. doi: 10.1109/TNSRE.2019.2924536. Epub 2019 Jun 24.
3
Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles.
J Neuroeng Rehabil. 2019 May 9;16(1):55. doi: 10.1186/s12984-019-0517-9.
4
Effect of lateral wedged insoles on the knee internal contact forces in medial knee osteoarthritis.
Gait Posture. 2019 Feb;68:443-448. doi: 10.1016/j.gaitpost.2018.12.030. Epub 2018 Dec 22.
5
Adaptive Neural Control of a Kinematically Redundant Exoskeleton Robot Using Brain-Machine Interfaces.
IEEE Trans Neural Netw Learn Syst. 2019 Dec;30(12):3558-3571. doi: 10.1109/TNNLS.2018.2872595. Epub 2018 Oct 19.
6
Modeling and Simulation of a Lower Extremity Powered Exoskeleton.
IEEE Trans Neural Syst Rehabil Eng. 2018 Aug;26(8):1596-1603. doi: 10.1109/TNSRE.2018.2854605. Epub 2018 Jul 9.
7
8
Adaptive Admittance Control for an Ankle Exoskeleton Using an EMG-Driven Musculoskeletal Model.
Front Neurorobot. 2018 Apr 10;12:16. doi: 10.3389/fnbot.2018.00016. eCollection 2018.
9
Active impedance control of a knee-joint orthosis during swing phase.
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:435-440. doi: 10.1109/ICORR.2017.8009286.
10
Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads.
PLoS One. 2017 Jul 12;12(7):e0180320. doi: 10.1371/journal.pone.0180320. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验