Suppr超能文献

搜索 PDF 大山:扫描的电子健康记录文档中的自动化知识发现。

Searching the PDF Haystack: Automated Knowledge Discovery in Scanned EHR Documents.

机构信息

College of Osteopathic Medicine, Pacific Northwest University of Health Sciences, 200 University Pkwy Yakima, Washington, United States.

Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States.

出版信息

Appl Clin Inform. 2021 Mar;12(2):245-250. doi: 10.1055/s-0041-1726103. Epub 2021 Mar 24.

Abstract

BACKGROUND

Clinicians express concern that they may be unaware of important information contained in voluminous scanned and other outside documents contained in electronic health records (EHRs). An example is "unrecognized EHR risk factor information," defined as risk factors for heritable cancer that exist within a patient's EHR but are not known by current treating providers. In a related study using manual EHR chart review, we found that half of the women whose EHR contained risk factor information meet criteria for further genetic risk evaluation for heritable forms of breast and ovarian cancer. They were not referred for genetic counseling.

OBJECTIVES

The purpose of this study was to compare the use of automated methods (optical character recognition with natural language processing) versus human review in their ability to identify risk factors for heritable breast and ovarian cancer within EHR scanned documents.

METHODS

We evaluated the accuracy of the chart review by comparing our criterion standard (physician chart review) versus an automated method involving Amazon's Textract service (Amazon.com, Seattle, Washington, United States), a clinical language annotation modeling and processing toolkit (CLAMP) (Center for Computational Biomedicine at The University of Texas Health Science, Houston, Texas, United States), and a custom-written Java application.

RESULTS

We found that automated methods identified most cancer risk factor information that would otherwise require clinician manual review and therefore is at risk of being missed.

CONCLUSION

The use of automated methods for identification of heritable risk factors within EHRs may provide an accurate yet rapid review of patients' past medical histories. These methods could be further strengthened via improved analysis of handwritten notes, tables, and colloquial phrases.

摘要

背景

临床医生担心他们可能不知道电子病历 (EHR) 中大量扫描的和其他外部文档中包含的重要信息。一个例子是“未被识别的 EHR 风险因素信息”,定义为患者 EHR 中存在的遗传性癌症风险因素,但当前治疗提供者并不知晓。在一项使用手动 EHR 图表审查的相关研究中,我们发现,EHR 中包含风险因素信息的一半女性符合进一步进行遗传性乳腺癌和卵巢癌风险评估的标准。但她们并未被转介进行遗传咨询。

目的

本研究旨在比较使用自动化方法(光学字符识别与自然语言处理)与人工审查在识别 EHR 扫描文档中遗传性乳腺癌和卵巢癌风险因素方面的能力。

方法

我们通过比较我们的标准(医生图表审查)与涉及亚马逊 Textract 服务(亚马逊公司,西雅图,华盛顿州,美国)的自动化方法、临床语言注释建模和处理工具包 (CLAMP)(德克萨斯大学健康科学中心的计算生物医学中心,休斯顿,德克萨斯州,美国)和一个定制的 Java 应用程序,评估了图表审查的准确性。

结果

我们发现,自动化方法可以识别出大多数需要临床医生手动审查的癌症风险因素信息,否则这些信息可能会被遗漏。

结论

在 EHR 中使用自动化方法识别遗传性风险因素可能提供对患者既往病史的准确且快速的审查。通过对手写笔记、表格和口语化短语的分析改进,可以进一步增强这些方法。

相似文献

4
Automatic classification of scanned electronic health record documents.扫描电子健康记录文档的自动分类。
Int J Med Inform. 2020 Dec;144:104302. doi: 10.1016/j.ijmedinf.2020.104302. Epub 2020 Oct 17.

引用本文的文献

本文引用的文献

2
Automatic classification of scanned electronic health record documents.扫描电子健康记录文档的自动分类。
Int J Med Inform. 2020 Dec;144:104302. doi: 10.1016/j.ijmedinf.2020.104302. Epub 2020 Oct 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验