Square Tyler A, Sundaram Shivani, Mackey Emma J, Miller Craig T
Department of Molecular & Cell Biology, University of California, Berkeley, USA.
Evodevo. 2021 Mar 25;12(1):4. doi: 10.1186/s13227-021-00172-3.
Vertebrate teeth exhibit a wide range of regenerative systems. Many species, including most mammals, reptiles, and amphibians, form replacement teeth at a histologically distinct location called the successional dental lamina, while other species do not employ such a system. Notably, a 'lamina-less' tooth replacement condition is found in a paraphyletic array of ray-finned fishes, such as stickleback, trout, cod, medaka, and bichir. Furthermore, the position, renewal potential, and latency times appear to vary drastically across different vertebrate tooth regeneration systems. The progenitor cells underlying tooth regeneration thus present highly divergent arrangements and potentials. Given the spectrum of regeneration systems present in vertebrates, it is unclear if morphologically divergent tooth regeneration systems deploy an overlapping battery of genes in their naïve dental tissues.
In the present work, we aimed to determine whether or not tooth progenitor epithelia could be composed of a conserved cell type between vertebrate dentitions with divergent regeneration systems. To address this question, we compared the pharyngeal tooth regeneration processes in two ray-finned fishes: zebrafish (Danio rerio) and threespine stickleback (Gasterosteus aculeatus). These two teleost species diverged approximately 250 million years ago and demonstrate some stark differences in dental morphology and regeneration. Here, we find that the naïve successional dental lamina in zebrafish expresses a battery of nine genes (bmpr1aa, bmp6, cd34, gli1, igfbp5a, lgr4, lgr6, nfatc1, and pitx2), while active Wnt signaling and Lef1 expression occur during early morphogenesis stages of tooth development. We also find that, despite the absence of a histologically distinct successional dental lamina in stickleback tooth fields, the same battery of nine genes (Bmpr1a, Bmp6, CD34, Gli1, Igfbp5a, Lgr4, Lgr6, Nfatc1, and Pitx2) are expressed in the basalmost endodermal cell layer, which is the region most closely associated with replacement tooth germs. Like zebrafish, stickleback replacement tooth germs additionally express Lef1 and exhibit active Wnt signaling. Thus, two fish systems that either have an organized successional dental lamina (zebrafish) or lack a morphologically distinct successional dental lamina (sticklebacks) deploy similar genetic programs during tooth regeneration.
We propose that the expression domains described here delineate a highly conserved "successional dental epithelium" (SDE). Furthermore, a set of orthologous genes is known to mark hair follicle epithelial stem cells in mice, suggesting that regenerative systems in other epithelial appendages may utilize a related epithelial progenitor cell type, despite the highly derived nature of the resulting functional organs.
脊椎动物的牙齿呈现出广泛的再生系统。许多物种,包括大多数哺乳动物、爬行动物和两栖动物,在一个组织学上不同的位置——称为继承性牙板——形成替换牙,而其他物种则不采用这样的系统。值得注意的是,在一系列并系的辐鳍鱼类中发现了一种“无牙板”的牙齿替换情况,如棘鱼、鳟鱼、鳕鱼、青鳉和多鳍鱼。此外,不同脊椎动物牙齿再生系统中,牙齿的位置、更新潜力和延迟时间似乎差异很大。因此,牙齿再生的祖细胞呈现出高度不同的排列和潜力。鉴于脊椎动物中存在的再生系统范围,尚不清楚形态上不同的牙齿再生系统在其原始牙齿组织中是否部署了一组重叠的基因。
在本研究中,我们旨在确定牙齿祖上皮细胞是否可能由具有不同再生系统的脊椎动物牙列之间保守的细胞类型组成。为了解决这个问题,我们比较了两种辐鳍鱼类的咽齿再生过程:斑马鱼(Danio rerio)和三刺鱼(Gasterosteus aculeatus)。这两种硬骨鱼物种大约在2.5亿年前分化,在牙齿形态和再生方面表现出一些明显的差异。在这里,我们发现斑马鱼原始的继承性牙板表达一组九个基因(bmpr1aa、bmp6、cd34、gli1、igfbp5a、lgr4、lgr6、nfatc1和pitx2),而活跃的Wnt信号和Lef1表达发生在牙齿发育的早期形态发生阶段。我们还发现,尽管三刺鱼牙齿区域没有组织学上不同的继承性牙板,但相同的一组九个基因(Bmpr1a、Bmp6、CD34、Gli1、Igfbp5a、Lgr4、Lgr6、Nfatc1和Pitx2)在最底层的内胚层细胞层中表达,该区域与替换牙胚最密切相关。与斑马鱼一样,三刺鱼的替换牙胚还额外表达Lef1并表现出活跃的Wnt信号。因此,两种鱼类系统,一种具有有组织的继承性牙板(斑马鱼),另一种缺乏形态上不同的继承性牙板(三刺鱼),在牙齿再生过程中部署了相似的遗传程序。
我们提出,这里描述的表达域描绘了一种高度保守的“继承性牙上皮”(SDE)。此外,已知一组直系同源基因标记小鼠毛囊上皮干细胞,这表明其他上皮附属器中的再生系统可能利用相关的上皮祖细胞类型,尽管由此产生的功能器官具有高度特化的性质。