Suppr超能文献

人类流动性限制和病毒感染特征对 COVID-19 传播影响的随机建模。

Stochastic modelling of the effects of human-mobility restriction and viral infection characteristics on the spread of COVID-19.

机构信息

Department of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo, 184-8588, Japan.

Department of Immunological Diagnosis, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.

出版信息

Sci Rep. 2021 Mar 25;11(1):6856. doi: 10.1038/s41598-021-86027-2.

Abstract

After several months of "lockdown" as the sole answer to the COVID-19 pandemic, balancing the re-opening of society against the implementation of non-pharmaceutical measures needed for minimizing interpersonal contacts has become important. Here, we present a stochastic model that examines this problem. In our model, people are allowed to move between discrete positions on a one-dimensional grid with viral infection possible when two people are collocated at the same site. Our model features three sets of adjustable parameters, which characterize (i) viral transmission, (ii) viral detection, and (iii) degree of personal mobility, and as such, it is able to provide a qualitative assessment of the potential for second-wave infection outbreaks based on the timing, extent, and pattern of the lockdown relaxation strategies. Our results suggest that a full lockdown will yield the lowest number of infections (as anticipated) but we also found that when personal mobility exceeded a critical level, infections increased, quickly reaching a plateau that depended solely on the population density. Confinement was not effective if not accompanied by a detection/quarantine capacity surpassing 40% of the symptomatic patients. Finally, taking action to ensure a viral transmission probability of less than 0.4, which, in real life, may mean actions such as social distancing or mask-wearing, could be as effective as a soft lockdown.

摘要

经过数月的“封锁”,成为应对 COVID-19 大流行的唯一手段后,平衡社会重新开放与实施减少人际接触的非药物措施变得至关重要。在这里,我们提出了一个随机模型来研究这个问题。在我们的模型中,人们可以在一维网格上的离散位置之间移动,当两个人处于同一位置时,就有可能发生病毒感染。我们的模型有三组可调参数,分别描述了 (i) 病毒传播、(ii) 病毒检测和 (iii) 个人流动性,因此,它能够根据封锁放松策略的时间、程度和模式,对二次感染爆发的可能性进行定性评估。我们的研究结果表明,全面封锁将产生最少的感染(正如预期的那样),但我们也发现,当个人流动性超过临界水平时,感染会迅速增加,很快达到一个仅取决于人口密度的平台期。如果没有检测/隔离能力超过 40%的有症状患者,那么禁闭就不会有效。最后,采取行动确保病毒传播概率低于 0.4,这在现实生活中可能意味着采取保持社交距离或戴口罩等措施,可能与软封锁一样有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea3f/7994631/4f19a4c0cdea/41598_2021_86027_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验