Department of Ophthalmology, University of Bonn, Bonn, Germany.
Department of Biomedical Data Science, Radiology, and Medicine, Stanford University, Stanford, CA, USA.
Eye (Lond). 2021 Aug;35(8):2110-2118. doi: 10.1038/s41433-021-01503-3. Epub 2021 Mar 25.
Sensitive and robust outcome measures of retinal function are pivotal for clinical trials in age-related macular degeneration (AMD). A recent development is the implementation of artificial intelligence (AI) to infer results of psychophysical examinations based on findings derived from multimodal imaging. We conducted a review of the current literature referenced in PubMed and Web of Science among others with the keywords 'artificial intelligence' and 'machine learning' in combination with 'perimetry', 'best-corrected visual acuity (BCVA)', 'retinal function' and 'age-related macular degeneration'. So far AI-based structure-function correlations have been applied to infer conventional visual field, fundus-controlled perimetry, and electroretinography data, as well as BCVA, and patient-reported outcome measures (PROM). In neovascular AMD, inference of BCVA (hereafter termed inferred BCVA) can estimate BCVA results with a root mean squared error of ~7-11 letters, which is comparable to the accuracy of actual visual acuity assessment. Further, AI-based structure-function correlation can successfully infer fundus-controlled perimetry (FCP) results both for mesopic as well as dark-adapted (DA) cyan and red testing (hereafter termed inferred sensitivity). Accuracy of inferred sensitivity can be augmented by adding short FCP examinations and reach mean absolute errors (MAE) of ~3-5 dB for mesopic, DA cyan and DA red testing. Inferred BCVA, and inferred retinal sensitivity, based on multimodal imaging, may be considered as a quasi-functional surrogate endpoint for future interventional clinical trials in the future.
视网膜功能的敏感且稳健的结果测量对于年龄相关性黄斑变性(AMD)的临床试验至关重要。最近的一个发展是利用人工智能(AI)根据多模态成像得出的结果来推断心理物理学检查的结果。我们在 PubMed 和 Web of Science 等数据库中使用“人工智能”和“机器学习”以及“视野计”、“最佳矫正视力(BCVA)”、“视网膜功能”和“年龄相关性黄斑变性”等关键词进行了文献回顾。到目前为止,基于 AI 的结构-功能相关性已被应用于推断传统的视野计、眼底控制的视野计和视网膜电图数据,以及 BCVA 和患者报告的结果测量(PROM)。在新生血管性 AMD 中,BCVA 的推断(以下简称推断的 BCVA)可以用均方根误差(7-11 个字母)来估计 BCVA 结果,这与实际视力评估的准确性相当。此外,基于 AI 的结构-功能相关性可以成功推断出明适应和暗适应(DA)蓝和红测试的眼底控制的视野计(FCP)结果(以下简称推断的敏感性)。通过添加短的 FCP 检查,可以提高推断的敏感性的准确性,对于明适应、暗适应蓝和暗适应红测试,平均绝对误差(MAE)可达到3-5 dB。基于多模态成像的推断的 BCVA 和推断的视网膜敏感性可以被视为未来干预性临床试验的准功能性替代终点。