Suppr超能文献

计算与连接组上动态模式相关的时间序列。

Computing Temporal Sequences Associated With Dynamic Patterns on the Connectome.

作者信息

George Vivek Kurien, Puppo Francesca, Silva Gabriel A

机构信息

Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.

Center for Engineered Natural Intelligence, University of California, San Diego, San Diego, CA, United States.

出版信息

Front Syst Neurosci. 2021 Mar 9;15:564124. doi: 10.3389/fnsys.2021.564124. eCollection 2021.

Abstract

Understanding how the structural connectivity and spatial geometry of a network constrains the dynamics it is able to support is an active and open area of research. We simulated the plausible dynamics resulting from the known connectome using a recent model and theoretical analysis that computes the dynamics of neurobiological networks by focusing on how local interactions among connected neurons give rise to the global dynamics in an emergent way. We studied the dynamics which resulted from stimulating a chemosensory neuron (ASEL) in a known feeding circuit, both in isolation and embedded in the full connectome. We show that contralateral motorneuron activations in ventral (VB) and dorsal (DB) classes of motorneurons emerged from the simulations, which are qualitatively similar to rhythmic motorneuron firing pattern associated with locomotion of the worm. One interpretation of these results is that there is an inherent-and we propose-purposeful structural wiring to the connectome that has evolved to serve specific behavioral functions. To study network signaling pathways responsible for the dynamics we developed an analytic framework that constructs Temporal Sequences (TSeq), time-ordered walks of signals on graphs. We found that only 5% of TSeq are preserved between the isolated feeding network relative to its embedded counterpart. The remaining 95% of signaling pathways computed in the isolated network are not present in the embedded network. This suggests a cautionary note for computational studies of isolated neurobiological circuits and networks.

摘要

理解网络的结构连通性和空间几何结构如何限制其能够支持的动力学是一个活跃且开放的研究领域。我们使用最近的一个模型和理论分析,通过关注相连神经元之间的局部相互作用如何以涌现的方式产生全局动力学,来模拟已知连接体所产生的合理动力学。我们研究了在已知进食回路中刺激化学感受神经元(ASEL)所产生的动力学,该刺激既单独进行,也在完整连接体中进行。我们表明,模拟中出现了腹侧(VB)和背侧(DB)运动神经元类别的对侧运动神经元激活,这在性质上与与蠕虫运动相关的节律性运动神经元放电模式相似。这些结果的一种解释是,连接体存在一种内在的——我们认为是有目的的——结构布线,这种布线已经进化以服务于特定的行为功能。为了研究负责这些动力学的网络信号通路,我们开发了一个分析框架,该框架构建时间序列(TSeq),即图上信号的时间有序游走。我们发现,相对于其嵌入的对应物,孤立进食网络中只有5%的TSeq得以保留。在孤立网络中计算出的其余95%的信号通路在嵌入网络中不存在。这为孤立神经生物学回路和网络的计算研究敲响了警钟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/797b/7985353/6a051e18fe13/fnsys-15-564124-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验